近年来,神经科学领域出现了大量可重复研究的趋势。不幸的是,这一努力往往受到所用工具种类繁多、项目特定的自定义代码以及难以跟踪所有用户定义参数的挑战。NeuroPycon 是一个开源多模态脑数据分析工具包,它提供基于 Python 的模板管道,用于 MEG、EEG、功能和解剖 MRI 数据的高级多处理,重点是连接性和图论分析。重要的是,它提供可共享的参数文件,以方便复制所有分析步骤。NeuroPycon 基于 NiPype 框架,该框架通过将许多常用的神经成像软件工具包装到一个通用的 Python 环境中来促进数据分析。换句话说,NeuroPycon 并不是一个拥有自己脑信号处理标准算法实现的脑成像软件,而是将现有包(用 Python、Matlab 或其他语言编写)无缝集成到一个统一的 Python 框架中。重要的是,由于 NiPype 提供的多线程处理和计算效率,NeuroPycon 提供了一种快速并行处理的简单选项,这在处理大量多维脑数据时至关重要。此外,其灵活的设计允许用户通过将不同的节点相互连接来轻松配置图形分析管道。每个节点可以是 Python 包装的模块、用户定义的函数或成熟的工具(例如用于 MEG 分析的 MNE-Python、用于图论指标的 Rada 工具等)。最后但并非最不重要的一点是,使用 NeuroPycon 参数文件完整描述任何管道的能力是可重复性的重要特性,因为它们可以共享并用于他人轻松复制。NeuroPycon 的当前实现包含两个互补的包:第一个称为 ephypype,包括用于电生理分析的管道和用于动态管道创建的命令行界面。目前的实现允许 MEG/EEG 数据导入、预处理和清理,通过自动去除眼部和心脏伪影,以及传感器或源级连接分析。第二个包称为 graphpype,旨在通过各种图论指标(包括模块化分区)研究功能连接。本文介绍了该工具包的理念、架构和功能,并通过交互式笔记本提供了说明性示例。NeuroPycon 可通过 github(https://github.com/neuropycon)下载,两个主要包均在线记录(https://neuropycon.github.io/ephypype/index.html 和 https://neuropycon.github.io/graph pype/index.html)。未来的发展包括多模态数据融合(例如 MEG 和 fMRI 或颅内 EEG 和 fMRI)。我们希望 NeuroPycon 的发布能够吸引更多用户和新的贡献者,并且
•船只相互作用对海洋哺乳动物,海洋爬行动物和鱼类,鲨鱼和射线构成了潜在威胁。•虽然一部分操作区域重叠了侏儒蓝鲸和座头鲸迁移偏见,但这种重叠代表了BIA的一小部分。鉴于项目容器通常运行的慢速速度,与鲸鱼的相互作用不太可能。•鲸鲨在运营区的存在可能是在迁移到Ningaloo礁期间的。只有在短时间内才能在该地区进行鲸鱼鲨鱼,它们的存在将是迁移的。•操作区域与敏感乌龟区域的偏差重叠,但是鉴于水深和缺乏筑巢的潜力,海龟很可能仅将该区域不经常用于过境。•船只活动不太可能导致对动物区系的短期破坏,而对关键栖息地没有预期的影响。
通常,交通流量模拟器分为两个主要类别:显微镜和宏观。前者专注于详细的单个车辆行为,而后者则侧重于大规模(例如城市规模)交通的集体行为。介观交通模拟器有时分为宏观的交通模拟器是两者的混合物。尽管他们在某种程度上描述了个人车辆行为,但其主要目的是模拟大规模流量的集体行为。中镜模拟器对于建模大规模的交通管理和操作特别有用,例如拥塞定价,乘车共享和自动化的车队管理,这些天数越来越突出。几个显微镜交通模拟器被发表为开源软件,例如Sumo(Lopez等,2018)。据作者所知,介质和宏观模拟器的可用性是有限的。
隐藏在简单之后的是一个事实,即计算卷积要求对输入边界的工作做出假设。虽然这些假设的后果可以在计算机视觉和图像处理中忽略,但在DL中并不容易完成分辨率层次结构的深度,并且在分辨率金字塔的顶部,每个像素可能代表底部的图像的重要片段。
尽管进行了数十年的临床和临床前研究,但我们对人类腺病毒 (HAdV) 及其载体的先天免疫反应仍然了解甚少。在这项研究中,我们探讨了乳铁蛋白对三种用作疫苗载体的 HAdV 类型的影响。乳铁蛋白是一种分泌性球状糖蛋白,在组织稳态被破坏后,会影响对一系列病原体的直接和间接先天免疫反应。乳铁蛋白复合物增加 HAdV 摄取和诱导人类吞噬细胞成熟的机制尚不清楚。我们表明,乳铁蛋白将 B、C 和 D 类 HAdV 类型重定向到 Toll 样受体 4 (TLR4) 细胞表面复合物。TLR4 介导的 HAdV-乳铁蛋白复合物内化诱导了 NLRP3 相关反应,包括细胞因子释放和质膜完整性的暂时破坏,但不会导致细胞死亡。这些数据影响了我们对 HAdV 免疫原性的理解,并可能提供提高基于 HAdV 的载体/疫苗的有效性的方法。
摘要。本文认为Peano算术的概括,希尔伯特算术是毕达哥拉斯的基础。Hilbert算术将数学基础(Peano算术和集合理论)统一,物理基础(量子力学和信息)以及哲学的先验主义(胡塞尔的现象学现象学)统计于正式的理论和数学结构,这实际上是在侯赛尔(Husserl)的“哲学上的哲学”迹象之后。在通往该目标的途径中,希尔伯特算术本身以有限集和序列和量子信息相关的信息来识别无限的信息,这两者都出现在三个“降低酶”中:相应地,数学,物理和本体论,每种都可以产生相关的科学和认知领域。科学先验主义是哲学先验主义的伪造。总体的基本概念也可以在数学上也相应地解释为一致的完整性和物理,因为宇宙不是在经验上或实验上定义的,而是因为含有其外部性的最终整体性。
a 英国伦敦大学学院霍克斯研究所,伦敦大学学院,英国伦敦 b 英国伦敦国王学院,精神病学、心理学和神经科学研究所,法医和神经发育科学系 c 英国伦敦国王学院,生物医学工程和成像科学学院,早期生命成像研究系 d 英国伦敦国王学院,MRC 神经发育障碍中心 e 英国剑桥大学,英国剑桥 f 美国宾夕法尼亚州费城儿童医院和宾夕法尼亚大学医学院,寿命脑研究所,邮编 19104 g 美国宾夕法尼亚州费城宾夕法尼亚大学,精神病学系,邮编 19104 h 美国宾夕法尼亚州费城儿童医院,儿童和青少年精神病学和行为科学系,邮编 19104 i 美国宾夕法尼亚州费城宾夕法尼亚大学,转化医学和治疗学研究所,邮编 19104 j 美国明尼苏达大学,儿童发展研究所,邮编 19104 k 美国罗德岛州普罗维登斯罗德岛医院 l 美国华盛顿州西雅图比尔和梅琳达·盖茨基金会 m 挪威斯塔万格大学 n 挪威斯塔万格大学医院放射科、斯塔万格医学影像实验室 (SMIL) o 英国伦敦大学学院痴呆症研究中心
PyBaMM 包含一个可互换模型库,允许用户测试不同的方法。没有用于交换电池数据处理方法的等效方法,导致研究人员的工作重复。因此,需要一个开源数据处理包,研究人员可以在一个框架内开发新的分析工具。PyProBE 的分析模块编写为模块化和直观的,具有一致的数据结构和内置的 Pydantic 数据验证(Colvin 等人,2024 年)。随着新方法的开发,可以添加它们并立即与现有方法进行比较。
抽象的碳 - 碳复合材料是碳基质增强的碳纤维,并被归类为非常适合高温结构应用的高级材料。碳 - 碳复合材料的特征是在高温下保持出色的机械性能和结构稳定性,并已在航空航天应用中用作喷嘴,热壳和前缘。但是,制造碳 - 碳复合材料的常规方法是昂贵且耗时的。这项工作的目的是开发一种使用高压重新浸润过程创建添加性生产(AM)碳 - 碳复合材料的方法。这样做,与低压重新浸润相比,需要更少的渗透周期,从而减少了总生产时间。样品。对于这两种技术,AM碳纤维/PEEK复合零件均用于复合预成型,SC-1008酚醛树脂被用作聚合物基质。热解循环,以将酚醛树脂转化为所需的碳基质。两种技术相互比较,分析了每种技术产生的孔隙率。与传统的VARTM技术相比,这项工作中开发的高压重新浸润系统的孔隙率较小,需要更少的重新渗透和热解周期,以达到所需的孔隙率。(:。)
摘要越来越多的证据支持了线粒体功能障碍可能代表帕金森氏病(PD)的关键特征的想法。能源生产的中央调节剂线粒体也参与了其他几种基本功能,例如细胞死亡途径和神经炎症,使它们成为PD管理的潜在治疗靶点。有趣的是,与PD相关的最新研究报告了胰岛素敏化剂MSDC-0160靶向线粒体丙酮酸载体(MPC)的神经保护作用。作为丙酮酸进入线粒体基质的唯一进入点,MPC在能量代谢中起着至关重要的作用,在PD中受到影响。因此,这项研究旨在提供有关MSDC-0160神经保护作用的机制的见解。我们研究了慢性MSDC-0160治疗在单侧6-OHDA PD大鼠中的行为,细胞和代谢影响。我们通过使用核磁共振光谱(NMR)基于基于的代谢组分学的人的背纹状体活检中的关键线粒体酶表达了线粒体相关的过程。MSDC-0160单侧6-OHDA大鼠的治疗改善了运动行为,减少了多巴胺能神经神经膜的神经神经化,并降低了MTOR活性和神经炎症。同时,MSDC-0160施用强烈修改的能量代谢,这是酮症发生,β氧化和谷氨酸氧化以满足能量需求并维持能量稳态的情况。MSDC-0160通过重组与能量代谢相关的多种途径来发挥其神经保护作用。
