单萜因其作为口味,香料,杀虫剂和能量浓厚的燃料而受到重视。微生物生物合成为这些重要分子提供可持续的生物合成途径,但生产水平仍然有限。在这里,我们引入了一种生物传感器驱动的微生物工程策略,以增强单类药物的产生,特别是针对Geraniol。使用Pyr1受体的诱变库(带有可延展结合口袋的植物ABA信号通路的多功能生物传感器),我们筛选了24个单键型,并鉴定出对八种响应于八种的Pyr1变体,包括Geraniol。在耐热酵母kluyveromyces Marxianus中表达了低背景,高度选择性的geraniol敏感的Pyr1变体,作为一种基于生长的生物传感器电路,从而可以快速应变工程。通过将geraniol敏感的Pyr1传感器与全基因组CRISPR-CAS9诱变方法耦合,我们确定了六个基因敲除,可增强香精醇的产生,从而增加了2倍的滴度。这项研究证明了PYR1生物传感器平台可以使快速应变工程和改善所需代谢物滴度的突变体的鉴定。
植物使用化学诱导的二聚化(CID)模块(包括受体pyr1和HAB1)感知脱落酸(ABA),这是由配体激活的pyr1抑制的磷酸酶。此系统是唯一的,因为可以重新编程配体识别的相对容易。为了扩展Pyr1系统,我们设计了一个正交的“*”模块,该模块携带了二聚体界面盐桥; X射线晶体学,生化和体内分析证实了其正交性。我们使用此模块创建了Pyr1* mandi /hab1*和pyr1* azin /hab1*,它们对其激活的配体曼陀果实和偶氮甲基具有纳摩尔敏感性。在拟南芥和酿酒酵母中进行的实验证明了使用活物生物传感器和构建多输入/输出遗传电路的抗抑郁剂污染物的敏感检测。我们的新模块启用了用于植物和真核合成生物学的可编码的多渠道CID系统,可以增强新的基于植物和微生物的感应方式。
Fructose-2,6-bisphosphate restores TDP-43 pathology-driven genome repair deficiency in motor neuron diseases Anirban Chakraborty a# , Joy Mitra b# , Vikas H. Maloji Rao b , Manohar Kodavati b , Santi M. Mandal d , Satkarjeet K. Gill e , Sravan Gopalkrishnashetty Sreenivasmurthy E,Velmarini Vasquez B,Mikita Mankevich D,Balaji Krishnan E,Gourisankar Ghosh D,Muralidhar L. Hegde B,C,C,*,Tapas hazra a,*。美国德克萨斯州加尔维斯顿大学医学部内科系,美国b 77555,b美国卫生间研究所神经病变研究中心,休斯敦卫理公会研究所,美国德克萨斯州休斯敦市神经外科部,美国纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市,纽约州纽约市纽约市,美国纽约市纽约州纽约市,纽约州纽约州纽约市,美国纽约州纽约市,美国纽约州纽约市,迭戈,拉霍亚,加利福尼亚州92093,美国E神经病学系,米切尔神经退行性疾病中心,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国,美国#同样贡献 *相应作者的地址:
摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
