多路复用操作和对多个陷阱站点的扩展相干控制是大规模体系结构中陷阱离子处理器的基本要求。在这里,我们使用具有积分光子组件的表面电极陷阱来证明这些构建块,这些陷阱可扩展到大量区域。我们在两个区域中使用集成光实施了一个拉姆西序列,分别为375μm,在脉冲之间在200μs中从一个区域转移到另一个区域。为了在运输过程中实现低运动激励,我们开发了用于测量和减轻用于将集成光传递到离子的裸露介电表面的影响的技术。我们还证明了在具有低光学串扰的单独区域中对两个离子的同时控制,并使用它执行同时光谱,以将两个位点之间的场噪声相关联。我们的工作展示了集成光子离子陷阱系统中的第一个运输和连贯的多ZONE操作,这为在被困的离子量子量耦合器件架构中进一步扩展构成了基础。
我们报告了离子阱 QCCD(量子电荷耦合器件)架构的所有必要组件集成到坚固、完全连接且可编程的离子阱量子计算机中的情况。该系统采用 171 个 Yb + 离子作为量子比特,138 个 Ba + 离子用于协同冷却,并围绕 Honeywell 低温表面阱构建,能够进行任意离子重排和跨多个区域的并行门操作。作为最小演示,我们并行使用两个空间分离的交互区域来执行任意四量子比特量子电路。通过各种方式在组件级别和整体级别对该架构进行了基准测试。包括状态准备和测量、单量子比特门和双量子比特门在内的各个组件都具有随机基准测试的特征。整体测试包括并行随机基准测试,显示不同门区域之间的串扰可以忽略不计,利用中间电路测量的传送 CNOT 门,以及 2 4 的量子体积测量。