分析和实践证据表明,量子计算解决方案优于传统替代方案。依靠变分量子特征值求解器 (VQE) 和量子近似优化算法 (QAOA) 的量子启发式算法已被证明能够为困难的组合问题生成高质量的解决方案,但将约束纳入此类问题却难以实现。为此,这项工作提出了一种量子启发式方法来处理随机二元二次约束二次规划 (QCQP)。通过确定量子电路的强度以有效地从难以采样的概率分布中生成样本,变分量子电路被训练为生成二值向量以近似地解决上述随机程序。该方法建立在对偶分解的基础上,需要解决一系列经过明智修改的标准 VQE 任务。使用量子模拟器对几个合成问题实例进行的测试证实了该方法的近乎最优性和可行性,以及它为确定性 QCQP 生成可行解的潜力。
人们认为,模拟多体量子系统的动力学是量子计算机能够显示出优于传统计算机的量子优势的首批领域之一。噪声中型量子 (NISQ) 算法旨在有效利用当前可用的量子硬件。对于量子模拟,已经提出了各种类型的 NISQ 算法,它们各有优势,也各有挑战。在这项工作中,我们提出了一种新算法,即截断泰勒量子模拟器 (TQS),它继承了现有算法的优点并减轻了一些缺点。我们的算法没有任何经典量子反馈回路,并通过构造绕过了荒芜高原问题。我们的混合量子经典算法中的经典部分对应于具有单个二次等式约束的二次约束二次规划 (QCQP),它允许半定松弛。基于 QCQP 的经典优化最近被引入作为量子辅助特征值求解器 (QAE) 中的经典步骤,QAE 是用于汉密尔顿基态问题的 NISQ 算法。因此,我们的工作为汉密尔顿基态问题的 NISQ 算法和汉密尔顿模拟提供了概念上的统一。我们将基于微分方程的 NISQ 算法(如量子辅助模拟器 (QAS) 和变分量子模拟器 (VQS))恢复为我们算法的特例。我们在当前云量子计算机上的一些小例子上测试了我们的算法。我们还提供了一种系统的方法来提高我们算法的准确性。