腔QED实验是光子介导相互作用支持的物质非平衡阶段的天然宿主。在这项工作中,我们考虑了通过研究腔体光子作为动力学自由度而不是通过虚拟过程的相互作用的动态介体来对BCS超级流动性模型进行的腔QED模拟。,每当将腔频率与原子共鸣时,我们发现了淬灭后长时间相干性的增强。我们讨论这与非平衡超级流体的增强相当,并突出了与最近在固态量子光学元件中研究的类似现象的相似性。我们还通过在我们的分析中包括光子损失和不均匀耦合的影响,讨论实验中观察这种增强的谐振配对的条件。
近年来,化学和凝聚态材料的模拟已成为量子计算的一项重要应用,为某些强关联电子系统的电子结构求解提供了指数级加速。迄今为止,大多数处理方法都忽略了这样一个问题:相对论效应(最常由量子电动力学 (QED) 描述)是否也可以在多项式时间内在量子计算机上模拟。本文我们表明,在合理假设下,在正确处理费米子场波函数的所有四个分量的情况下,等效 QED(相当于微扰理论中的二阶 QED)可以在多项式时间内模拟。特别是,我们使用 Trotter-Suzuki 公式对位置和动量基础上的此类模拟进行了详细分析。我们发现,在 ns 位点的 3D 晶格上执行此类模拟所需的 T 门数量在最坏情况下缩放为 O ( n 3 s /ϵ ) 1+ o (1)(对于位置基础模拟,在热力学极限下),在动量基础上缩放为 O ( n 4+2 / 3 s /ϵ ) 1+ o (1)。我们还发现,量子比特化的缩放效果略好一些,对于晶格 eQED,最坏情况缩放为 e O ( n 2+2 / 3 s /ϵ ),而准备电路的复杂性导致动量基础上的缩放效果略差,为 e O ( n 5+2 / 3 s /ϵ )。我们进一步提供了用于模拟均匀电子气的相对论版本的具体门数,表明可以使用少于 10 13 个非 Clifford 操作模拟具有挑战性的问题,并详细讨论了如何在有效 QED 中准备多参考配置交互状态,这可以为基态提供合理的初始猜测。最后,我们估计了准确模拟金等重元素所需的平面波截止。
1东京医学和牙科大学的文科和科学学院,2-8-3-30 Konodai,Ichikawa,Ichikawa 272-0827,日本2,Hakubi高级研究中心,京都大学,Yoshida-Honmachi,Sakyo-ku,Sakyo-Ku,Sakyo-Ku,Kyoto 606-8501,日本科学,33年,KAW 33 Japan 4 Department of Physics I, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 5 National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan 6 Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation,多哈,卡塔尔∗作者,应向其解决任何信件。7目前的地址:日本东京大学光子科学技术研究所,日本东京113-0033。
IBM 已经创建了世界上最大的量子计算培训项目。我们的实习项目已经发展到提供分布在全球的 100 多个带薪实习机会,我们招募进入该领域的最佳多元化人才。
我们的装置由1/4波长超导谐振器和栅极定义DQD组成,如图1(a)所示。谐振器由超导量子干涉仪(SQUID)阵列[29]组成,其谐振频率fr可调。每个SQUID包含两个约瑟夫森结,其电感与通量有关。在本文中,我们设定谐振器频率fr = 6.758 GHz,总衰减线宽、内部损耗率和外部损耗率为(κ,κi,κe)/2π=(58.9,36.9,22.0)MHz。由于 SQUID 阵列的电感很高,谐振器阻抗 Zr≈1kΩ,远远超过典型共面波导的 50Ω。DQD 由 GaAs/AlGaAs 异质结构中的顶部金属栅极定义,标记为 L、P、U、R 和 D。电子被捕获在 DQD 中,其中两个点的电化学电位可以通过栅极 L、P 和 R 进行调制。然后
本法案的目的是确保美国在量子信息科学及其技术应用方面的持续领导地位:1.支持量子信息科学技术的研究、开发、示范和应用——a)发展劳动力队伍b)促进多学科课程和研究机会c)解决基础研究空白d)促进设施和中心的进一步发展e)刺激研究并促进量子技术的更快发展2.改善机构间规划和协调3.最大限度地提高联邦政府量子信息科学技术研究、开发和示范项目的有效性4.促进联邦政府、联邦实验室、工业界和大学之间的合作5.促进量子信息科学技术安全国际标准的发展
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。
3.1连接的量子模块。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.2可扩展设备的配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 3.3 Transmon Qubit。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 3.4 Transmon的色散读数轨迹。。。。。。。。。。。。。。。。。。。。。。。35 3.5读取直方图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 3.6基本的谐振器测量概括。。。。。。。。。。。。。。。。。。。。。。。36 3.7在不同的谐振器配置中响应。。。。。。。。。。。。。。。。。。。。。。39 3.8谐振器功率依赖性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 3.9反馈冷却过程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 3.10腔状态的数字峰值分辨率。。。。。。。。。。。。。。。。。。。。。。。。46 3.11存储腔的直接光谱。。。。。。。。。。。。。。。。。。。。。。。。。。47
许多损耗机制可以限制平面和基于3D的电路量子电动力学(CQED)设备的连贯性和可扩展性,尤其是由于包装。3D外壳的低损失和自然隔离使其成为相干缩放的良好候选者。我们引入了一种同轴传输线设备架构,其连贯性类似于传统的3D CQED系统。测量结果显示出良好控制的外部和片上耦合,没有交叉对话或虚假模式的光谱以及出色的谐振器和Qubit寿命。我们将一个无缝的3D腔内的谐振器量系统集成了一个谐振器,并在单个芯片上分别对量子器,读取谐振器,purcell滤镜和高Q条纹谐振器进行了图案。设备的连贯性及其易于集成使它成为复杂实验的有前途的工具。由AIP Publishing出版。[http://dx.doi.org/10.1063/1.4959241]
