我应该因为不完全理解消化过程而拒绝晚餐吗?不,如果我对结果满意的话就不应该。(O. Heaviside,《电磁理论》,第2卷,1899年)本课程将向研究生介绍量子工程与技术 (QET),全面而严谨地探讨用于通信、计算、模拟、计量和传感的量子相干结构和设备的基本原理和工程设计概念。课程将提供数学基础、精选的设计方法,并深入探讨相干量子系统的工程设备实现,重点关注量子光学系统。本课程为有兴趣了解量子原理在技术中的应用及其更广泛的社会影响的工程专业学生提供广泛而严谨的量子力学训练。
在实验室中已经实现了高度复杂的叠加状态[1]。尽管它们看起来很脆弱,但这种状态在量子信息和计算以及量子基础中的理论问题中至关重要。可能会感到惊讶的是,具有许多自由度的孤立系统自然地演变成宏观的叠加状态。这些状态包含正交成分,这些成分在宏观量中存在,例如通常被认为是自然界“经典”的大物体的位置或动量。在接下来的内容中,我们使用一个特定的示例(本质上是布朗运动的示例)来说明这一结果是如何遵循约翰·冯·诺伊曼(John von Neumann)[2]的1929年量子量表定理(QET)的。该定理在2009 - 10年的复活中已被遗忘了50多年[3,4]。QET包含与量子统计力学和量子力学基础相关的见解。我们对后一个主题的一些评论得出结论。QET超出了有关分离的量子系统中热促进的典型性(量度集中)结果[5]。典型性结果表明,大型系统的几乎所有纯状态ψ都最大地纠缠在一起,并且在除小的子空间1以外的所有内容都产生了一个density矩阵휌1,它接近归一化的身份,即微域密度矩阵。这意味着小子空间的热特性。QET专门集中在宏观观察物的子空间上,而不是微观自由度的一般子集。对状态von Neumann证明了系统的时间演变(千差线):所有初始状态ψ0都将大部分时间作为典型状态作为宏观空间的典型状态(请参见下面的等式(11)),当然是该定理所需的某些假设所需的某些假设[6]。下面给出的计算说明,对于大型系统的任何子空间(例如,包括一组宏观可观察物所定义的子空间定义),密度操作员휌1通过追踪在其他随机纯状态的自由度上引起的密度操作员是非常可能的,这是非常可能的接近휌1〜1。基于该措施的主导地位,人们可以启发性地说,即使系统以强烈侵犯该特性的特殊状态开始,动态演变也会导致其大部分时间在典型的状态下。QET为这种直觉提供了严格的基础。令{휙1,푗1}푛1= 1 = 1 = 1和{휙2,푗2}푛2= 1 = 1 = 1是两个标记为1和2的Hilbert Space的正对异性态的一组,带有身份操作员,具有身份操作员퐼1和퐼2。
在本文中,我们探索了不同量子场论 (QFT) 中的反馈控制协议,以研究量子系统非幺正演化中的量子关联。传统的 QFT 研究侧重于幺正演化下纯态的量子纠缠,然而,我们使用量子能量隐形传态 (QET)(一种利用基态纠缠的能量传输协议)来研究混合态中的量子关联,并引入量子不和谐作为度量。QET 涉及中间电路测量,这会破坏纯态纠缠。尽管如此,我们的分析表明,量子不和谐在整个 QET 过程中保持关联。我们使用包括 Nambu-Jona-Lasinio (NJL) 模型在内的基准模型进行了数值分析,揭示了量子不和谐始终充当相变的序参数。该模型被扩展为同时具有手性化学势和化学势,这对于研究模拟与手性密度算子耦合的左夸克和右夸克之间的手性不平衡的相结构很有用。在我们研究的所有情况下,量子不和谐都表现为相变的序参数。
量子电池预计将实现储能容量的显着进步。在经典电池中,每个子系统的能量密度达到其最大值,称为E C,这是通过将最大能量除以子系统数来确定的。我们证明,通过量子能远程(QET)方案,可以超过量子电池中的限制,从而使子系统的能量密度超过了E c的值。我们的协议提高了效率,降低了量子计算机上的实验复杂性,并通过本地操作和经典通信(LOCC)实现瞬时能量充电。利用量子纠缠,该协议显着改善了量子储能系统,量子计算的有希望的进步和新的技术应用。这项工作代表了朝着革命量子储能和转移革命的关键步骤。