基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。
结合状态的性质是辐射光谱的基础,并且在从腺体物质到夸克 - 杜松等离子体(QGP)的过渡中起着核心作用。在强耦合QGP(SQGP)中,温度,结合能和较大的碰撞宽度的相互作用在评估HADRONIC状态及其最终熔化的中等内部性能方面带来了巨大的挑战。尤其是,QGP中繁重的Quarkonia的存在是一个长期的问题,很难通过考虑其在真能轴上的光谱特性来解决。我们通过分析复杂能量平面中的中等热力学夸克t- t-含量来解决这个问题。我们首先在真空中验证这种方法,其中很容易识别观察到的状态的t -matrix极。将这种方法部署到QGP中最近计算出的T型t-Matrices中时,我们发现复杂能平面中的极点可以持续到令人惊讶的较大温度,这取决于中等相互作用的强度。虽然精确地定义了极点位置的质量和宽度,但结合能的概念并不是由于缺乏由基础抗/Quark光谱函数的(大)宽度引起的阈值。因此,我们的方法提供了一种新的严格量子力学标准,以确定SQGP中强烈态温度的熔化温度,同时提高了传输参数的理论确定的准确性。
高于150 MeV的温度,核物质过渡到夸克 - 胶状等离子体(QGP):未绑定的夸克和胶子的阶段。在重合离子碰撞中以每核核子对(√𝑠NN)的质量量表中的重型离子碰撞达到TEV量表,该量表可以产生大于10 GEV / FM 3的能量密度。该工程的空间分布源自原子核在初始状态的重叠的波动形状。在约10 fm / c的时间尺度上,QGP(一种接近完美的流体)将空间各向异性转化为发射颗粒的动量各向异性,称为各向异性流动。这种观察结果与流体动力模型计算的比较允许提取QGP粘度。观众核子 - 碰撞核的残留物,在出现各向异性之前,该核的近距离核(≪1 fm / c)对初始状态波动很敏感。本论文列出了各向异性流的新颖测量及其相对于观众偏转的铅铅和Xenon-Xenon碰撞的波动,分别为2.76 TEV和5.44 TEV,而爱丽丝在大型Hadron Collider上。这些观察结果显示出具有初始能量密度的形状的近似通用缩放。使用观众和仅使用产生颗粒的流程测量之间的差异限制了初始状态的波动。与当前没有观众动力学的当前初始状态模型进行比较表明,需要这些动力学来提高QGP粘度提取的精度。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
我们提出了一个框架,以模拟硬质探针的动力学,例如在量子计算机上的热,强耦合的夸克 - 胶状等离子体(QGP)中的重型夸克或喷气机的动力学。QGP中的硬探针可以视为由Lindblad方程在马尔可夫极限下控制的开放量子系统。但是,由于计算成本较大,大多数当前的现象学计算在QGP中进化的硬探针的现象学计算使用量子演化的半经典近似值。quantum-tum计算可以减轻这些成本,并具有对经典技术的指数加速进行完全量子处理的潜力。我们报告了在IBM Q量子设备上简化的框架演示,并应用随机身份插入方法(RIIM)来考虑CNOT去极化噪声,此外测量误差缓解。我们的工作证明了在当前和近期量子设备上模拟开放量子系统的可行性,这与核物理,量子信息和其他领域的应用广泛相关。
摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。
我们利用相对论电阻磁流体动力学 (RRMHD) 研究了高能重离子碰撞中电荷相关的各向异性流。我们将光学 Glauber 模型视为夸克胶子等离子体 (QGP) 的初始模型,并以两个碰撞核中带电粒子的源项为初始电磁场的麦克斯韦方程组解。在 √ s NN = 200 GeV 的 Au-Au 和 Cu-Au 碰撞中,使用这些初始条件进行 RRMHD 模拟。我们根据 RRMHD 导致的电荷分布,计算了两次碰撞中电荷奇数对定向流 ∆ v 1 和椭圆流 ∆ v 2 的贡献。结果表明,∆ v 1 和 ∆ v 2 与介质的电导率 ( σ ) 大致成正比。在 σ = 0 时。 023 fm − 1 情况下,∆ v 1 的结果与 Au-Au 碰撞中的 STAR 数据一致。此外,在 Cu-Au 碰撞中,∆ v 1 在 η = 0 时具有非零值。我们得出结论,电荷相关的各向异性流是提取高能重离子实验中 QGP 介质电导率的良好探针。
我们采用了一个详细的传输模型,并在重离子煤炭中使用逼真的流体动力学来研究炭的各向异性流动,包括定向流,椭圆流和三角流量。J /ψ的定向流(V 1)是由Quark-Gluon等离子体(QGP)旋转引起的速度-ODD初始能量密度引起的。同时,J /ψ的椭圆流(V 2)主要取决于两个因素:核碰撞区域的初始空间能量密度和魅力动力学的热化程度。j /ψ的三角流量来自魅力夸克的三角流,从而从周围的散装培养基中获取各向异性流动,并具有波动的初始能量密度。J /ψ的这些各向异性流(V 1,V 2,V 3)有助于我们理解波动和旋转QGP中魅力和炭的详细演变。