2023年3月 - TEC 26:关于EWS主题的TEC工作的协议,《 TEC关于适应技术的工作利益相关者提高工作的可见性并告知知识产品的发展2024年2月:由TEC活动小组(以及GEO/EW4ALL专家)审查的注释大纲草案2024年3月:零草稿的零草稿在审查中,由TEC活动组进行了审查。 SB60和UNFCCC博客2024年7月:TEC活动小组(和EW4All专家)审查了《政策简报》第2稿,以查看第3节的评论和反馈:2024年8月:审查KM&R审查/讨论的政策简介的最终草案,由TEC活动小组审查/讨论,由TEC活动小组会议2024年9月29日 - TEC 29:COP 29:QM及其最终范围及其启动及其最终范围及其裁决4政策简介
过去几年,随着全球产业和政府的巨额投资,量子信息科学与技术 (QIST) 领域得到了巨大的扩展。随着该领域的扩展,对 QIST 的劳动力需求和公众对它的了解也在不断增加,至少是在表面层面上。学生在科普文章中阅读有关量子计算和相关技术的文章,变得好奇并渴望了解更多信息。然而,他们进入这些领域存在障碍,因为他们通常必须学习物理 (或相关领域) 课程,而且即使这样,他们也只能在高三,最好是高三才能学习和使用量子力学 (QM) 的完整数学机制。这是因为,传统上,学生首先要花大量时间学习在位置空间中解薛定谔方程,然后才能看到有限希尔伯特空间问题,例如磁场中的自旋。有些书籍 [1–4] 从有限希尔伯特空间开始,这样更容易理解,因为在这种情况下,主要的先决条件是线性代数。事实上,人们可以在没有上过 QM 课程的情况下学习量子信息,而且有些教科书也采用这种方法,例如 Mermin 撰写的关于量子计算的优秀书籍 [5]。参考文献 [6–9] 介绍了量子计算高中模块,这些模块也是从有限希尔伯特空间开始,并且假设学生具备线性代数知识或在模块开始时快速介绍线性代数。但这可能是一个障碍,因为线性代数通常不包含在标准高中课程中(至少在美国不包含)。一个雄心勃勃的基于多媒体的 MOOC 已经开发出来,用于向非科学家教授 QM [10]。然而,这仍然需要学生投入大约一个月的时间来完成课程。一般来说,现有资源要么需要一些高中以外的高等数学知识,要么需要投入大量时间(数周)才能有意义地解决问题并真正了解 QIST。这可能会限制 QIST 外展活动的范围和受众,这些活动旨在吸引年轻学生进入 STEM 领域并提高普通公众的科学素养。在这里,我们描述了我们两个人(EB、SEE)在 NSF 赞助的 EFRI 项目下开发的一个外展计划。我们的方法部分基于我们中的一个人(TR)在 2015 年设计的一种简单机制,当时他被要求在英国一个针对 12-14 岁学生的数学营教授一些量子计算课程,后来在 2017 年初在卢旺达非洲数学科学研究所举办的为期一周的系列讲座中进行了改进。这些讲座是针对具有统计和数据分析背景的硕士生。这门课程的讲稿被编成了《Q 代表量子》一书 [11]。这使得没有任何线性代数(或其他复杂数学)背景的学生能够充分了解量子信息的基础知识并执行简单的计算。本书第一部分的 pdf 副本可在 qisforquantum.org 免费获取。从今以后,我们将本书及其介绍的形式称为 QI4Q。EB 和 SEE 开发的其余推广计划使用 IBM Quantum (IBM Q) Experience 模拟器和设备,学生在其中运行电路并将结果与他们使用 QI4Q 形式进行的纸笔工作进行比较。最后阶段涉及我们其中一人(EB)开发的一款名为“Money or Tiger”的量子游戏。总而言之,推广计划有四个要素:
1 上海大学理学院数学系,上海 200444;xuyaochen@shu.edu.cn 2 上海大学生命科学学院,上海 200444;mql1117@shu.edu.cn (QM);ssdrg@shu.edu.cn (JR) 3 上海海事大学信息工程学院,上海 201306;lchen@shmtu.edu.cn 4 上海交通大学医学院 & 中国科学院上海生命科学研究院干细胞生物学重点实验室,上海 200030;gw_1992@sjtu.edu.cn 5 广东农商职业技术学院计算机科学系,广州 510507; kyfeng@gdaib.edu.cn 6 中国科学院上海营养与健康研究所,中国科学院生物医学大数据中心,中国科学院计算生物学重点实验室,上海 200031; huangtao@sibs.ac.cn 7 中国科学院上海营养与健康研究所,中国科学院组织微环境与肿瘤重点实验室,中国科学院大学,上海 200031 * 通讯地址:zbzeng@shu.edu.cn(ZZ);caiyudong@staff.shu.edu.cn(YC);电话:+86-21-66136132(YC)† 这些作者对这项工作做出了同等贡献。
量子力学 (QM) 的起源可以追溯到 1900 年,当时马克斯·普朗克引入了作用量子,并因此提出了离散能量的非经典概念。1905 年,阿尔伯特·爱因斯坦成功应用量子假设解释光电效应,1913 年尼尔斯·玻尔发展了氢原子模型,此后,维尔纳·海森堡得以发展一种封闭、一致且连贯的数学形式,能够以不变的方式解释实验室中实际观察到的线强度。玻恩和约当认识到海森堡使用的密集数据表实际上是矩阵,而奇怪的乘法规则则揭示了它们的非交换结构。事实上,在寻找描述量子的方法时,海森堡重新发现了一个众所周知的数学领域,即矩阵代数。因此,让我们首先介绍一些有关矩阵的概念和定义。 n × n 复数矩阵是 n × n 个复数的数组。2 × 2 实数矩阵的示例为 1 3 2 − 1
摘要我们计算研究Zika NS3解旋酶,这是一种使用ATP水解能进行核酸重塑的生物运动。通过经典和QM/MM模拟,我们探索了图案V的构象局势,该构象形象V连接了用于ATP水解和核酸结合的活性位点的保守环。由元磷酸组形成引发的ATP水解涉及由GLU286质子抽象激活的水分子的亲核攻击。基元V氢键通过Gly415骨干NH组与该水键合,从而有助于水解。当无机磷酸盐从镁离子的配位壳移开时,释放自由能,自由能被释放出来,从而诱导了基序V的构象构象构象构象构象形态的显着转移,以在Gly415 NH和Glu285之间建立氢键。Zika NS3解旋酶充当棘轮生物电动机,其基序V转变由Gly415的γ-磷酸在ATPase位点引导。
土壤微生物群落在提供基本生态系统服务中起着关键作用,受到可能随着土地管理而变化的几种物理和化学土壤特性的显着影响。这项研究探讨了不同土地覆盖类型(针叶树架,阔叶林,灌木丛,牧场/草地和农田)对在意大利,西班牙和portugal选择中等高度荒漠化风险的南部欧洲地区的物理,化学和微生物特性(均导致土壤健康)的物理,化学和微生物特性(均导致土壤健康)的影响。在土地覆盖率不同的地点,我们确定了微生物生物量(C MIC),微生物代谢的活性和指数,包括C MIC /C ORG比率,代谢商(QCO 2)和矿化商(QM)。还测量了土壤物理和化学特性,包括散装密度(BD),水含量(WC),pH,阳离子交换能力(CEC),总有机C(C ORG)及其某些不稳定分数,可提取的C(c Ext)和可矿物质的C(c Min)C(C min),总N含量和总n含量和总含量和C/N。结果表明,根据WC,CEC,C ORG,C ext,c min,n,c/n的趋势,土地覆盖类型在确定针叶树覆盖物的微生物变量的幅度中起着重要作用。与土地覆盖相比,干旱指数对研究变量的影响较低。与C ORG含量较高的地点相比,Corg含量较低的位点(大多数农田)倾向于更快地损失C,这是由高QM值所表明的,除了西班牙酸性土壤外。因此,必须采取紧迫的措施来抵消c poorer土壤失去C的趋势,促进土地覆盖类型,从而通过确保稠密和更连续的土壤覆盖时间来促进土壤恢复。我们还确定了一组最小的土壤变量,这些变量提供了有关沙漠中ification风险的短期(微生物变量)和长期(物理和化学变量)的短期(微生物变量)和长期(物理和化学变量)的信息。
作为 CRISPR-Cas9 基因组编辑技术的核心,内切酶 Cas9 可在 DNA 中引入位点特异性断裂。然而,目前仍缺乏改善 Cas9 功能的精确机制信息。本文将多微秒分子动力学、自由能和多尺度模拟与溶液 NMR 和 DNA 裂解实验相结合,以解析靶 DNA 裂解的催化机制。我们表明,活性 HNH 核酸酶的构象与催化 Mg 2+ 紧密相关,揭示了其主要的结构作用。这种活性 Mg 2+ 结合的 HNH 通过分子模拟、溶液 NMR 和 DNA 裂解分析得到一致描述,同时还揭示了催化 H840 的质子化状态受到活性位点突变的强烈影响。最后,从头算 QM(DFT)/MM 模拟和元动力学建立了催化机制,表明催化作用由 H840 激活并由 K866 完成,从而使 DNA 裂解实验合理化。这些信息对于增强 CRISPR-Cas9 的酶功能以改进基因组编辑至关重要。
8. 发病日期字段不是必填项,但是您可以输入日期(如果适用)。9. 在问题字段下,说明客户的服务原因。确保您的服务原因符合质量管理的所有文档要求。10. 在状态和状态(SNOMED ICD)下输入计划的状态。状态(SNOMED ICD)只有一个选项,即活动状态。11. 输入开始日期。到期日期和结束日期不是必填项。12. 输入负责员工、指派员工和非负责员工的一方。13. 指明此服务原因的功能领域/生活领域。14. 用客户自己的话输入服务原因。但是,此字段未标记为红色,并且是保存表单所必需的;根据 QM 的文档要求,它是必需的。15. 指明适用于此服务原因的所有信息来源。16. 完成此部分后,单击添加新目标。请参阅下面的屏幕截图。按顺序输入每一项很重要。例如,您需要先输入目标,然后再输入目标和干预措施,这样它们就与目标相关联。
本研究可视为第三种进展方式的一个例子。我们将在量子力学的关系解释 (RQM) 背景下首次彻底研究形而上学不确定性 (MI),RQM 是罗韦利本人倡导的量子力学 (QM) 解释。我们认为 MI 和 RQM 之间的相互作用是互惠互利的。一方面,MI 为 RQM 提供了一个广泛的哲学框架,我们敢说,形而上学的框架,这一框架在文献中一直被忽视,并且有望削弱一些经常针对这种特定解释提出的反对意见。1 另一方面,RQM 可能提供基本 (量子) MI 的例子。这不仅本身很有趣。它还使 MI 免于最近的反对。在深入研究关系不确定性之前,我们应该立即添加一个重要的免责声明。本文的目的不是为 RQM 或 MI 2 d 的总体存在进行辩护,甚至不是为我们将要讨论的 MI 的具体解释进行辩护。相反,重点在于它们的相互作用。我们将看到,这种相互作用为 RQM 和 MI d 提供了启示,或者说我们将要讨论这一点。
我们已经开发了一本完整的免费教学材料集合,以帮助教师创建一个以学生为中心的量子力学(QM)课程,该课程吸引了学生,同时支持他们共同发展感知和计算技能。我们的材料基于学生对量子力学的理解的研究,并旨在适应各种教学环境和教师风格或偏好。它们是为旋转的第一个教学范式而设计的,其中包括一组学习目标,概念(“点击”)问题,会议前调查以及作业和考试问题,以及来自三个不同机构的三位讲师的示例讲义。在这项工作中,我们描述了上限中的主动学习的外观,并描述了每个教学工具并提供了一些代表性的示例。我们还讨论了如何在我们的每个机构中使用这些材料,以说明如何在不同机构中使用它们。v C 2023作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1119/5.0109124