量子计算有望利用量子态的集体特性(包括叠加、干涉和纠缠)进行计算,在解决各种应用中计算成本巨大的问题方面发挥重要作用。量子力学 (QM) 方法是各种应用的候选方法,可以在基于结构的方法中提供准确的绝对能量计算。QM 方法是描述反应途径及其势能面 (PES) 的有力工具。在本研究中,我们应用量子计算来描述氯甲烷和氯离子之间的双分子亲核取代 (SN 2) 反应的 PES。我们使用量子算法进行了无噪声和噪声模拟,并比较了模拟的准确性和噪声影响。在无噪声模拟中,UCCSD 和 k-UpCCGSD 的结果与具有相同活动空间的全构型相互作用 (FCI) 的结果相似,这表明量子算法可以描述 SN 2 反应的 PES。在噪声模拟中,UCCSD 比 k-UpCCGSD 更容易受到量子噪声的影响。因此,k-UpCCGSD可以作为UCCSD的替代方案,以减少嘈杂的中尺度量子时代的量子噪声效应,并且k-UpCCGSD足以描述本工作中SN 2 反应的PES。结果显示了量子计算对SN 2 反应途径的适用性,并为基于结构的量子计算分子模拟提供了有价值的信息。
这项调查试图调查有关不确定性关系(UR)和量子测量(QMS)的普遍哲学的真理和定义。相应的哲学被称为未经证实的争议,被揭示为基于六个基本戒律。,但有人发现所有各自的戒律都被无法克服的义务抹黑。因此,关于ur,所指的哲学揭示了一个自我是一种不合理的神话。然后,您的出现是短暂的历史惯例,或者是简单且有限的数学公式,而没有任何必要的物理学。这样的发现加强了狄拉克的预测,即“以目前的形式无法在未来的物理学中生存”。您的著名方面激励着对QMS相关辩论的重新考虑。主要是表明,正确地,您与QM的真实描述没有任何必要的联系。对于此类描述,有必要从数学上,可观察到的量子可被视为随机变量。用单个采样的测量场景,例如波函数崩溃或Schr odinger的Cat Thought实验,被揭示为无用的发明。我们建议将QM描述为随机数据的传输过程。请注意,对于现有的量子辩论,上述UR – QMS重新估计,在问题方法中为有利可图的简约辩论提供了一些论点。这些辩论的无效方面也必须重新考虑,可能或多或少地投机愿景。
十六年前,斯科特·阿伦森 (Scott Aaronson) 在雷·拉弗拉姆 (Ray Laflamme) 的见证下指出,量子力学 (QM) 类似于一个操作系统,其余的物理学科都在这个操作系统上运行应用软件(广义相对论除外,“因为它还没有成功移植到这个特定的操作系统”)。在此之前,教育家和杰出的计算机科学家 (Umesh Vazirani) 凭借敏锐的洞察力才意识到,可以通过量子位和量子门的语言对 QM 进行完整而一致的介绍。更近一点,另一位博学者 (Terry Rudolph) 凭借深刻的直觉才意识到,通常作为这种方法基础的线性代数可以用中学生可以理解的简单重写系统来代替。重写系统是计算机科学的基础,事实上,它们就是计算机科学的组成部分(例如,图灵机和 lambda 演算),所以这些都是非常幸运的发展。此外,线性代数先修课程现在与机器学习牢牢地共享在计算机科学本科课程中,机器学习这一主题经历了一次非常深刻而突然的复兴。量子信息科学与技术 (QIST) 本质上是跨学科的,涵盖物理学、计算机科学、数学、工程学、化学和材料科学。我们提出了三个课程计划,将 QIST 主题(通过量子计算)纳入计算机科学本科课程
外壳 mtu EnergyPack 有多种尺寸和不同的外壳可供选择。封闭式 QS 系统和集装箱式 QM 和 QL 系统非常坚固,并且是为恶劣环境和具有挑战性的物流而定制设计的。提供出色的防尘、防虫、防潮和防热保护——内部和外部均有。集装箱式外壳的内部分为几个部分——一些与外部空气接触,一些则没有——以保护敏感的电气设备和电池免受任何污染。
事件地点 MD PA ID, OR, WA, MT CA NV AZ CO, UT, WY MN, WI NM KS NE, ND, SD OK, AR TX LA MO IL, IA IN, MI, OH KY TN AL FL MS GA SC NC VA WV DC NY DE ME, MA, NH, VHI , V AK , PR , AS PR , GU, XH, XQ, XU, XM, QM, MP, XL, QW
在本文中,我们试图反驳量子力学 (QM) 基础文献中普遍存在的正统主张,即“叠加态在实验室中从未被真正观察到”。为此,我们首先对著名的测量问题进行批判性分析,我们认为,该问题源于严格应用经验实证主义要求,将量子形式主义纳入他们对“理论”的特定理解。在这种情况下,临时引入投影假设(或测量规则)可以理解为来自朴素经验主义立场的必要要求,该立场假定观察是“常识”经验的不言而喻的给定——独立于形而上学(范畴)预设。然后,我们将注意力转向量子力学的两种“非坍缩”解释——模态解释和多世界解释——尽管它们否认“坍缩”是一个真实的物理过程,但仍然将测量规则作为理论的必要元素。与此相反,根据爱因斯坦的说法“只有理论才能决定什么可以被观察到”,我们建议回归对“物理理论”的现实主义表征理解,其中“观察”被认为源自理论预设。正是从这个角度出发,我们讨论了一种新的非经典概念表征,它使我们能够以直观(anschaulicht)的方式理解量子现象。抛开投影假设,我们讨论测量和观察量子叠加的一般物理条件。
经典物理学的常规相空间对空间和时间的处理方式有所不同,这种差异将导致现场理论和量子力学(QM)。在本文中,通过两个主要扩展可以增强相空间。首先,我们将Legendre转换的时间选择提升为动态变量。第二,我们将物质字段的泊松支架扩展到时空对称形式。随后的“时空空间”用于获得相对论场理论的汉密尔顿方程的明确协变版本。然后提出了形式主义的类似规范的量化,其中田地满足时空的换向关系,而叶面是量子。在这种方法中,经典的行动还促进了运营商,并通过其在物质 - 遗传分区中的不可分割性保留了明确的协方差。在新的非CASAL框架之间建立对应关系的问题(在不同时间是独立的字段)和传统的QM通过将空间类似相关器的概括性化为时空来解决。在这种概括中,哈密顿量被动作和常规颗粒取代,而被壳颗粒取代。量化叶面时,与页面和摇动机制相比,通过对叶状本征的条件来恢复上一个地图。我们还提供了对应关系的解释,其中给定理论的因果结构是从系统与环境之间的量子相关性出现的。这个想法适用于通用量子系统,并允许人们将密度矩阵推广到包含时空中相关器信息的操作员。
1. 点击以下链接:https://qm.llc.army.mil 2. 使用 CAC 登录。 3. 阅读主页上的重要公告和说明。 4. 转到页面顶部并单击“课程选项卡”。 5. 在“课程目录”下选择“QM 课程”。 6. 在第一个搜索框中输入课程名称。在下一个区域中单击包含您要查找的课程名称(如下所示)并按“GO” 7. 课程出现后,单击课程旁边的下拉菜单。然后选择“注册”。
部门主管 René Giesen 先生 33 61 国内政策 Raphaela Schulze 女士 31 18 部门主管/联邦国防军医院政策 Fatma Akarsu 女士 33 72 培训和继续教育 Georgios Papadopoulos 先生 26 41 公共关系和质量管理 Oliver 先生Roth 24 44 社会咨询领域 部门主管 Esta Grosardt 女士 28 55 原则 国内/BEM Maria Scholten 女士 29 26 原则、意见、研讨会 SaBS / SaZiv Dirk Jahr 先生 30 83