我们通过从具有稳定器表示的AME状态构建整个QMDS代码的全部QMDS代码来解决绝对最大纠缠(AME)状态和最大距离可分离(QMD)代码之间的关系。我们为AME状态的稳定器表示的发电机集引入了通用还原友好的形式,可以从中获得所有QMD的稳定器形式。我们的方法将用于相关的高维代码以及基于量子的代码。然后,我们将其与单向量子中继器的最佳代码联系起来,通过最大程度地降低短期基础设施成本以及此类量子中继器的长期运行成本。这将允许我们获得从AME父状态得出的最佳QMDS代码,该代码可用于此类量子中继器。
● 导航到工具 > 全局选项 > Copilot。 ● 勾选“启用 GitHub Copilot”。 ● 下载并安装 Copilot Agent 组件。 ● 单击“登录”按钮。 ● 在“GitHub Copilot:登录”对话框中,复制验证码。 ● GitHub Copilot:登录 ● 导航到或单击链接 https://github.com/login/device,粘贴验证码并单击“继续”。 ● GitHub 将请求 GitHub Copilot 必要的权限。要批准这些权限,请单击“授权 GitHub Copilot 插件”。 ● 权限获得批准后,您的 RStudio IDE 将显示当前登录的用户。 ● 关闭全局选项对话框,打开源文件(.R、.py、.qmd 等)并开始使用 Copilot 编码!
Erriurgun AD。 div>-4)DHS FIQRQ o:/tl/2024 ffi1til,-R。r. qovefil a ftq sfuq o ffi/mnfr -eftorfr(rteir/oor
中能重离子物理的主要目标是探索热而致密的强相互作用核物质的性质。将地面实验室的实验数据与理论计算进行比较是探索各种密度、温度和同位旋不对称条件下核物质基本性质的常用方法之一[1–4]。Boltzmann-Vlasov类(通常称为BUU类)和分子动力学类(通常称为QMD类)模型是模拟中能重离子碰撞(HIC)最流行的两种理论模型。介质中的核子-核子弹性截面(NNECS)是这两个模型的重要组成部分之一,近几十年来得到了广泛的研究[5–8]。自由空间中的NNECSσfreeel可以通过实验直接测量,但介质中的NNECS(σin-medel)的信息通常受到理论假设的约束。这些理论计算包括但不限于采用Bonn势的Dirac-Brueckner方法[9,10],采用现实核子-核子势的Dirac-Brueckner-Hartree-Fock方法[11],相对论性Brueckner-Hartree-Fock模型[12,13],封闭时间路径格林函数方法[14]。明确表明σin-medel受到核介质的修正,但这种修正程度还远未得到彻底解决。在大多数用于模拟中能 HIC 的理论模型中,为了简单起见,通常使用 NNECS 的参数化介质内校正因子。一般来说,该校正因子 F = σ in-med el /σ free el 与密度和/或动量以及同位旋有关 [ 15 – 21 ]。许多模型模拟已经证明 HIC 中的各种现象对 σ in-med el 敏感,因此