引言:量子机器学习 (QML) [ 1 ] 使用参数化量子电路 [ 2 ] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [ 3 – 8 ] 或生成建模 [ 9 – 13 ]。即使 QML 模型受益于高表达力 [ 14 ] 并在某些特定情况下表现出优于经典模型 [ 15, 16 ],但在深度神经网络时代,量子计算机 [ 17 ] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [ 18 ]。人们希望可以通过量子传感器 [ 19 ] 收集量子数据,并最终将其直接连接到量子计算机。在本文中,我们通过在量子设备上直接构建量子数据来模拟处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体来说,本文讨论如何使用监督学习方法计算哈密顿量 H 的基态相图。即使已经在二元情况下探索了类似的问题 [ 20 , 21 ],具有多个类别 [ 22 ] 并在超导平台上计算 [ 23 ],但所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且它们是通过分析或数值计算的,这些技术只能加快计算速度,而不能超出其验证范围。另外,异常检测(AD)是一种无监督学习技术,已被提出[24,25]作为绕过这一瓶颈的方法,通过查找数据集内的结构。然而,AD只能获得定性的、可能不稳定的结果,并且
如今,量子计算 (QC) 和机器学习 (ML) 是信息技术最具创新性的两个研究领域。量子机器学习 (QML) 将这两个主题融合在一起,开发出能够通过 QC 技术降低计算复杂度的 ML 任务模型。一个相关的 ML 应用是分类,它根据在初步学习过程中建立的模型识别新输入数据所属的类别。这是在由特征(描述数据的数字向量)和标签(预期输出类别)组成的训练数据集上实现的。分类器的准确性可以通过正确预测结果的总数与处理的数据总数来量化。对于近期应用,当前量子硬件在执行可靠性和可扩展性方面的局限性促进了混合 QML 解决方案的定义,这些解决方案充分利用了量子和经典处理。其中,可以提到变分量子电路和基于量子核估计的支持向量机。前者使用经过经典优化的参数化量子电路实现分类模型,以实现更高的精度。另一种尝试使用经典优化器最大化属于两个不同类别的数据的可区分性,并借助量子计算将特征映射到更高维空间中。在这两种情况下,都需要进行初步编码操作以将经典数据表示到量子系统上。然后,根据混合解决方案和信息的表示方式,特定的量子和经典操作完成分类。本论文旨在验证数据编码策略会影响模型的准确性,因此必须将其视为 QML 算法的可优化自由度。特别是,我们考虑了具有最有希望的可扩展性的幅度和角度编码。第一个将数据特征映射到量子位状态向量的概率幅度,而另一个则将数据嵌入为旋转门的角度参数。在这项工作中,我们探索了新的角度编码技术,并将其与文献中已有的技术进行了比较,以观察对准确性的影响,研究了 60 种不同的策略。使用 Pennylane QML 库开发和模拟了派生模型,而测试考虑了 Iris 和 Wine 数据集,以证明分类准确性对编码的依赖性。对于每个
1,2,3,4 印度浦那国防学院计算机科学系 摘要 论文“量子机器学习:利用量子计算增强学习算法”探讨了将量子计算原理集成到传统机器学习技术中,旨在解决可扩展性和计算效率低下等限制。它介绍了量子计算的基本概念,包括叠加和纠缠,以及它们在加速机器学习过程中的应用。该研究强调了量子算法通过更有效地处理大数据集和探索更大的假设空间来显着提高机器学习任务性能的潜力。讨论的关键量子机器学习算法包括量子支持向量机 (QSVM)、量子主成分分析 (QPCA) 和量子神经网络 (QNN),它们都利用量子力学来克服传统算法面临的计算障碍。量子近似优化算法 (QAOA) 也因其能够更有效地优化机器学习模型而受到关注。虽然量子机器学习 (QML) 的理论优势前景广阔,但这些技术的实际应用目前受到现有量子硬件的限制。这项研究通过研究 QML 在解决复杂数据处理挑战方面的潜在优势和未来影响,为新兴的 QML 领域做出了贡献。关键词:量子机器学习 (QML)、量子计算算法、量子支持向量机 (QSVM)、量子神经网络 (QNN)、量子近似优化算法 (QAOA)。1. 简介量子计算是计算领域的一种范式转变,它利用量子力学原理以传统计算机无法做到的方式处理信息。量子计算的核心是使用量子比特,它们可以存在于状态叠加中——不像传统比特那样只有 0 或 1。量子纠缠和叠加使量子计算机能够执行并行计算,与特定任务的传统算法相比,它有可能实现指数级的加速。关键算法,例如用于分解大数的 Shor 算法和用于数据库搜索的 Grover 算法,已经证明量子计算机可以比传统计算机更有效地解决某些问题 [1]。机器学习 (ML) 是人工智能 (AI) 的一个子集,涉及训练算法来学习
量子机器学习是最有希望获得实际优势的研究领域之一,它是量子计算和传统机器学习思想相互影响的产物。在本文中,我们应用量子机器学习 (QML) 框架来改进金融数据集中普遍存在的噪声数据集的二元分类模型。我们用来评估量子分类器性能的指标是受试者工作特征曲线下面积 (ROC/AUC)。通过结合混合神经网络、参数电路和数据重新上传等方法,我们创建了受 QML 启发的架构,并利用它们对非凸二维和三维图形进行分类。对我们的新 FULL HYBRID 分类器与现有量子和经典分类器模型进行广泛的基准测试表明,与已知的量子分类器相比,我们的新模型对数据集中的非对称高斯噪声表现出更好的学习特性,并且对于现有的经典分类器表现同样出色,并且在高噪声区域内比经典结果略有改善。
心脏病是全球死亡率的主要原因,早期发现对于改善患者预后至关重要。本研究提出了一种基于云的增强级联卷积神经网络(CCNN),结构结合了早期心脏病检测的先进机器学习算法。E-CNN模型旨在有效地处理大型数据集,利用基于云的资源来增强计算速度和可扩展性。克利夫兰心脏病数据集已预处理以验证缺失值并提高预测准确性。该研究还研究了使用云计算使用量子机学习(QML)框架的可行性,以使用诸如支持矢量机(SVM),人工神经网络(ANN)和K-Neareart邻居(KNN)等技术进行对心脏条件进行分类。实验结果表明,E-CNN获得99.2%,精度为99.4%,召回99.5%,F1得分为75%。和Kappa得分为98%。量子支持向量机(QSVM)方法的精度为85%,精度为79%,召回90%,F1得分为84%。袋装QSVM型号表现出出色的性能,在所有关键绩效指标中都具有完美的分数。该研究突出了集合学习方法(例如装袋)的潜力,以提高量子方法预测的准确性。拟议的基于云的E-CNN体系结构和QML框架为实时,远程分析健康数据提供了有希望的解决方案,有助于预防医疗保健和早期对心脏病的检测。关键字:基于云的,有效的卷积神经网络(E-CNN),机器学习,心脏病检测,早期检测,量子机器学习(QML),袋装QSVM。
摘要 — 量子算法旨在在基于门的量子计算机中处理量子数据(量子比特)。经严格证明,当输入是某些量子数据或映射到量子数据的某些经典数据时,它们比传统算法具有量子优势。然而,在实际领域,数据本质上是经典的,它们的维度、大小等都非常大。因此,将经典数据映射(嵌入)到量子数据是一个挑战,甚至在基于门的量子计算机中处理映射的经典数据时,量子算法相对于传统算法没有量子优势。对于地球观测(EO)的实际领域,由于遥感平台上的传感器不同,我们可以将某些类型的 EO 数据直接映射到量子数据。特别是,我们有以极化光束为特征的极化合成孔径雷达(PolSAR)图像。极化光束的偏振态和量子比特是物理状态的分身。我们将它们相互映射,并将这种直接映射称为自然嵌入,否则称为人工嵌入。此外,我们使用量子算法在基于门的量子计算机中处理自然嵌入的数据,而不管其相对于传统技术的量子优势如何;即,我们使用 QML 网络作为量子算法来证明我们自然地将数据嵌入基于门的量子计算机的输入量子位中。因此,我们在 QML 网络中使用并直接处理了 PolSAR 图像。此外,我们设计并提供了一个带有额外神经网络层的 QML 网络,即混合量子经典网络,并演示了在使用和处理 PolSAR 图像时如何编程(通过优化和反向传播)这种混合量子经典网络。在这项工作中,我们使用了 IBM Quantum 提供的基于门的量子计算机和基于门的量子计算机的经典模拟器。我们的贡献是,我们提供了具有自然嵌入特征(量子位的 Doppelganger)的非常具体的 EO 数据,并在混合量子经典网络中对其进行了处理。更重要的是,在未来,这些极化SAR数据可以通过未来的量子算法和未来的量子计算平台进行处理,以获得(或展示)相对于传统EO问题技术的量子优势。索引词——自然嵌入、参数化量子电路、极化合成孔径雷达(PolSAR)、量子机器学习(QML)。I.引言最近在构建基于门的量子计算机方面取得了突破,该计算机仅使用极少的量子比特[1]
摘要 - 这项研究探讨了大型量子限制的玻尔兹曼机器(QRBMS)的实现,QRBMS(QRBMS)是量子机器学习(QML)的关键功能,作为D-Wave Pegasus量子硬件上的生成模型,以解决入侵检测系统(IDS)中数据集中的数据集不平衡。通过利用Pegasus的增强连接性和计算功能,成功嵌入了具有120个可见和120个隐藏单元的QRBM,超过了默认嵌入工具的限制。QRBM合成了超过160万次攻击样本,达到了超过420万张记录的平衡数据集。使用传统平衡方法(例如Smote和Randomovers采样器)进行比较评估表明,QRBMS产生了高质量的合成样本,显着改善了不同分类器的检测率,精度,回忆和F 1分数。该研究强调了QRBM的可扩展性和效率,完成了毫秒的平衡任务。这些发现突出了QML和QRBM作为数据预处理中的下一代工具的变革潜力,为现代信息系统中的复杂计算挑战提供了强大的解决方案。
Lavinia Maria Mendes Araújo A, Plínio Márcio da Silva Ramos A, Isis Didier Lins A, Caio Bezerra Souto Maior AB, Rafael Chaves Souto Araújo C, Andre Juan Ferreira Martins de Moraes D, Asly Alexandre Canabarro D, Márcio José das Chagas Moura A, Enrique López Drogatt and the Center for Risk for For For For Risk For For For For For For For For For For For For For For For For the Center for For For For For For For For the Center for Risk For For For For For For For For For For For For For For For For For For For For For For For For For For the Center for Risk For For For For For For For the Center for Risk For For For For For For the Center for Risk for For Modeling, Department of Industrial Engineering, Federal University of Pernambuco,Recife,巴西B技术中心,Pernambuco联邦大学,Caruaru,Caruaru,巴西C国际物理研究所,Rio Grande University of Rio Grande University of Brazil d Do isis.lins@ufpe.br, caio.maior@ufpe.br, andre.jfmdm@gmail.com, askery@gmail.com, rafael.csa82@gmail.com, marcio.cmoura@ufpe.br, eald@g.edu Human Relianity is INCREASINGLY IMPORTANT IN ACCIDENT PREVENTION, AND MONITORING BIOLOGICAL PARAMETERS CAN HELP Detect Patterns Indicating Behaviors That May Lead发生事故。 脑电图(EEG)日期已用于识别油气行业机器操作员疲劳的主要原因。 虽然经典的机器学习方法(如多层珀普隆(MLP))已与脑电图数据一起使用,但量子计算在有效地解决复杂问题方面表现出了有望。 变化量子算法是应用于数据训练的经典结构的量子概念的一个例子。 本研究旨在将操作员嗜睡量子机器学习(QML)模型分类。 QML模型经过各种量子电路层,旋转和纠缠门训练。 1。Lavinia Maria Mendes Araújo A, Plínio Márcio da Silva Ramos A, Isis Didier Lins A, Caio Bezerra Souto Maior AB, Rafael Chaves Souto Araújo C, Andre Juan Ferreira Martins de Moraes D, Asly Alexandre Canabarro D, Márcio José das Chagas Moura A, Enrique López Drogatt and the Center for Risk for For For For Risk For For For For For For For For For For For For For For For For the Center for For For For For For For For the Center for Risk For For For For For For For For For For For For For For For For For For For For For For For For For For the Center for Risk For For For For For For For the Center for Risk For For For For For For the Center for Risk for For Modeling, Department of Industrial Engineering, Federal University of Pernambuco,Recife,巴西B技术中心,Pernambuco联邦大学,Caruaru,Caruaru,巴西C国际物理研究所,Rio Grande University of Rio Grande University of Brazil d Do isis.lins@ufpe.br, caio.maior@ufpe.br, andre.jfmdm@gmail.com, askery@gmail.com, rafael.csa82@gmail.com, marcio.cmoura@ufpe.br, eald@g.edu Human Relianity is INCREASINGLY IMPORTANT IN ACCIDENT PREVENTION, AND MONITORING BIOLOGICAL PARAMETERS CAN HELP Detect Patterns Indicating Behaviors That May Lead发生事故。脑电图(EEG)日期已用于识别油气行业机器操作员疲劳的主要原因。虽然经典的机器学习方法(如多层珀普隆(MLP))已与脑电图数据一起使用,但量子计算在有效地解决复杂问题方面表现出了有望。变化量子算法是应用于数据训练的经典结构的量子概念的一个例子。本研究旨在将操作员嗜睡量子机器学习(QML)模型分类。QML模型经过各种量子电路层,旋转和纠缠门训练。1。EEG信号已进行预处理,以提取相关特征,例如Higuchi分形维度,复杂性和迁移率以及统计特征。结果将与经典MLP模型进行比较。这项工作有助于探索QML嗜睡的背景,在文献中尚未对此进行广泛研究。它是QML模型适合此类数据的概念证明,并且随着量子计算的不断发展,可以进一步改进。关键字:脑电图。量子机学习。嗜睡检测。诊断。变异量子算法。简介量子力学提出了一种用于解决计算问题的新范式,有时比经典方法具有显着优势,例如在质量分解或量子系统模拟中(Maior等,2023)。在这项研究中,我们通过变异量子算法(VQA)利用量子机学习(QML)来分析一个实际问题 - 使用现实世界脑电图(EEG)时间序列数据检测嗜睡。我们在此扩展的摘要中分析了ULG多模式嗜睡数据库(也称为Drozy)的主题8(Massoz等,2016)。从脑电图数据中准确检测嗜睡对于确保行业和关键过程的安全至关重要。疲劳的工人可以在工作场所构成重大风险,尤其是在涉及危险行动的行业和
尽管许多量子计算 (QC) 方法都有望在理论上优于传统方法,但量子硬件仍然有限。因此,在计算机辅助药物设计 (CADD) 中利用近期 QC 需要明智地划分经典计算和量子计算。我们提出了 HypaCADD,这是一种混合经典量子工作流程,用于寻找与蛋白质结合的配体,同时考虑基因突变。我们明确确定了我们药物设计工作流程中目前可以通过 QC 替换的模块:非直观地,我们将突变影响预测因子确定为最佳候选者。因此,HypaCADD 将经典对接和分子动力学与量子机器学习 (QML) 相结合,以推断突变的影响。我们以 SARS-CoV-2 蛋白酶和相关突变体为例进行了案例研究。我们使用由量子比特旋转门构建的神经网络将经典机器学习模块映射到 QC 上。我们已经在模拟和两台商用量子计算机上实现了这一点。我们发现 QML 模型的性能可以与经典基线相媲美,甚至更好。总之,HypaCADD 为利用 QC 实现 CADD 提供了一种成功的策略。
3.6.3.2 JAN 或 J 标记 ............................................................................................................................................. 15 3.6.4 制造商标识 ............................................................................................................................................. 15 3.6.4.1 装配场地代码 ............................................................................................................................................. 15 3.6.5 原产国 ............................................................................................................................................. 15 3.6.6 日期代码 ............................................................................................................................................. 15 3.6.7 标记位置和顺序 ............................................................................................................................. 15 3.6.7.1 氧化铍封装标识符 ............................................................................................................................. 15 3.6.7.2 静电放电(ESD)敏感度标识符 ............................................................................................................. 15 3.6.8 QML 标记产品 ............................................................................................................................................. 16 3.6