摘要:中枢神经系统(CNS)肿瘤是儿童诊断出的最常见的实体瘤。cns肿瘤代表了癌症死亡和与20岁以下儿童有关的癌症死亡的主要原因,尽管在过去的几十年中,存活率却有所增加。现在5年的平均生存率几乎达到75%,在诊断后20年的某些非机敏组织学上约为97%。神经系统,认知和神经心理学的污点是儿童脑肿瘤的最残疾的长期影响。童年是极端脑敏感的时期,也是大多数大脑发育发生的生活时代。因此,儿童治疗中枢神经系统肿瘤经验的长期毒性会影响多个发育领域和日常功能,最终导致生存质量差(QoS)。我们回顾了重点介绍接受脑肿瘤治疗的小儿患者认知和神经心理障碍的危险因素,以更好地了解谁是主要风险以及监测这些患者的最佳策略。
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
越来越多的物联网(IoT)设备的使用会产生对数据传输的更大需求,并给网络带来了增加的压力。此外,与云服务的连接性可能是昂贵且效率低下的。雾计算提供与用户设备接近的资源,以克服这些缺点。但是,在物联网应用程序中的服务质量(QoS)和雾资资源管理的优化正变得具有挑战性。本文介绍了需要执行延迟敏感任务的车辆流量应用程序中的动态在线卸载方案。本文提出了两种算法的组合:动态任务调度(DTS)和动态能量控制(DEC),旨在最大程度地减少整体延迟,增强用户任务的吞吐量并最大程度地减少雾层的能量消耗,同时最大程度地利用资源约束的雾气节点的使用。与其他方案相比,我们的实验结果表明,这些算法可以将延迟减少高达80.79%,并将雾节点的延迟减少高达66.39%。此外,此方法将任务执行吞吐量提高了40.88%。
摘要 人工智能(AI)的进步和各种训练数据的激增促进了人工智能生成内容(AIGC)的发展。尽管效率很高,但人工智能模型固有的不稳定性对创建用户特定内容提出了挑战,尤其是在为用户创建虚拟形象时。为了解决这个问题,本文将无线感知(WP)与AIGC相结合,并引入了一个统一框架WP-AIGC,该框架利用WP获得的用户骨架来指导AIGC,从而生成与用户实际姿势相符的虚拟形象。具体而言,WP-AIGC首先采用一种新颖的多尺度感知技术来感知物理世界中的姿势并构建用户骨架。然后,将骨架和用户的要求传达给AIGC,从而指导虚拟形象的创建。此外,WP-AIGC可以根据用户反馈调整分配给感知和AIGC的计算资源,从而优化服务。实验结果验证了该服务的有效性。在有限的计算资源下,当四条链路参与感知时,WP-AIGC 可实现最佳 QoS 3.75。
摘要:计算机网络由数百万个节点组成,由于这些节点持续受到攻击,因此需要持续保护。如果量子计算机普及,保护此类网络的传统安全方法将不够有效。另一方面,我们可以利用量子计算和通信的能力来构建新的量子通信网络。在本文中,我们专注于提高经典客户端-服务器互联网应用程序的性能。为此,我们引入了一种新型物联网 (IoT) 量子网络,与传统物联网网络相比,它提供了更高的安全性和服务质量 (QoS)。这可以通过向传统物联网网络添加量子组件来实现。使用量子对应节点、通道和服务器。为了在量子节点和量子服务器之间建立安全通信,我们为建议的物联网量子网络定义了一个新的通信程序 (CP)。目前可用的量子计算机的量子比特大小较小(从 50 到 433 个量子比特)。拟议的物联网量子网络使我们能够通过连接多个量子节点(量子处理器)的计算工作来克服这个问题。
2 尼日利亚河流州哈科特港河流州立大学计算机工程系 摘要 - 带宽分配和管理在满足应用程序的服务质量 (QoS) 要求方面发挥着至关重要的作用,并促进了以用户为中心的网络模型的转变。由于带宽是一种稀缺资源,传统的带宽分配方法逐渐被人工智能方法所取代,以提高带宽利用率。在本研究中,研究了鲸鱼优化算法 (WOA) 如何在无线网络中提供最佳带宽分配。WOA 是一种最近的群体智能方法,它模仿了座头鲸的觅食模式。在本研究中,带宽被分配给实时用户 (RTU) 和非实时用户,同时为未来用户保留带宽。模拟是在 MATLAB 中实现的,并从连接概率的角度讨论了结果,重点关注可用带宽和网络上的 RTU 数量。从结果来看,提出的 WOA 技术有效地优化了分配给用户的带宽,并展示了少量带宽的带宽管理。索引术语-鲸鱼优化算法、带宽分配、服务质量、无线网络、连接概率
ACME数据包1100,ACME数据包3900,ACME数据包3950和ACME Packet 4900电器是专门设计的,以满足中小型企业和远程办公室/分支机构的独特价格性能和可管理性要求。非常适合小型站点边框控制和会话启动协议(SIP)中继服务终止应用,ACME数据包1100,ACME数据包3900,ACME数据包3950和ACME PACKET 4900设备在小型形式设备中提供Oracle的行业领先ESBC功能。支持高可用性(HA)配置,TDM后备,硬件辅助转码和服务质量(QOS)测量,ACME数据包1100,ACME数据包3900,ACME数据包3950和ACME Packet 4900设备在不适合的可重新启动性和绩效中是一种选择,即适用于条目和绩效。ACME Packet ESBC产品家族为最大的数据中心设计的最小分支机构设计的型号提供了分布,集中或混合sip sip trunking Tupologies的支持。
K. Anusha 1,R J Anandhi 2,Alok Jain 3,Monica Garg 4,Ali Saeed 5,K.D。Bodha 6* 1印度Telangana海得拉巴MLR理工学院CSE-AI&ML部门。2印度班加罗尔新地平线工程学院信息科学工程系。3印度Phagwara的可爱专业大学。 4劳埃德法学院,地块号 11,知识公园II,大诺伊达,北方邦201312。 5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。 摘要。 鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。 ,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。 本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。 本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。 此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。3印度Phagwara的可爱专业大学。4劳埃德法学院,地块号11,知识公园II,大诺伊达,北方邦201312。5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。摘要。鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。本文扩展了如何将DSOPF添加到增强的DMS功能可以促进这些设计目标并为渐进的集成电网提供基础。
摘要:现代电网因工业化而面临负荷需求的快速增长,导致环境不受监管,可再生能源的采用日益增加,这带来了技术挑战,特别是在稳定性方面。氢转换技术通过可再生能源彻底改变了清洁电力存储,太阳能氢现在可用于自主太阳能系统。太阳能光伏系统的效率与使用数字电子最大峰值功率跟踪(MPPT)技术密切相关。物联网(IoT)对于光伏系统的性能监控和实时控制至关重要,可增强对实时运行参数的理解。用于分布式太阳能设备的物联网和无线传感器网络以及联合建筑设计对于发展光伏建筑行业至关重要。本文提出的监控系统为太阳能光伏(PV)系统的智能远程实时监控提供了一种潜在有效的解决方案。它表现出很高的准确度,达到 98.49%,并可以在 52.34 秒的时间内将图形表示传输到智能手机应用程序。因此,电池的寿命延长了,能耗降低了,并且物联网 (IoT) 内部实时应用程序的服务质量 (QoS) 得到了增强。
(4) 本报告是在一系列研讨会和实地考察之后起草的,这些研讨会和考察涵盖了在所有成员国举行的 100 多次会议。这些会议吸引了当局、监管机构和民间社会代表的参与。 (5) 图 2 中的“实现目标的时间”是通过预测最近观察到的年均增长率(截至 2023 年)计算得出的。它没有预见任何加速,也没有考虑到可能产生积极影响的近期行动。5G 目标的当前 KPI 没有考虑服务质量,因此大多数当前 5G 部署可以归类为“基础 5G”。除了极少数私人网络外,“独立”5G 可确保高可靠性、低延迟并且对于实现高级功能至关重要,但仍然没有大规模部署。与此同时,3.4-3.8 GHz频段被视为欧盟5G的主要先锋频段,也是唯一可在大规模范围内实现覆盖范围和容量之间良好平衡的中频段,但到2023年,该频段的5G覆盖率仅为51%。自2023年起,欧盟委员会将与成员国共同致力于更新5G指标,这需要制定一种绘制服务质量(QoS)的方法。