该试剂盒提供了引物/探针混合物,用于使用 qPCR 检测外源核酸模板(cDNA 合成后的 DNA 或 RNA 模板)。引物存在于 PCR 限制浓度,允许与目标序列引物进行多路复用。即使目标基因的拷贝数较低,对照模板的扩增也不会干扰目标基因的检测。有多种染料可供选择,允许使用不同的通道检测控制模板。必须选择与检测目标基因不同的荧光染料。
细胞和基因治疗:在这种治疗中,使用病毒或基因组编辑来编辑基因组。由此产生的遗传异质性可能会影响这种治疗的安全性和有效性,但传统方法,例如扩增转基因细胞、分离克隆、通过测序或qPCR分析编辑效率,非常耗时费力。由于对细胞进行单独分析,单细胞分析可以跳过克隆扩增步骤,从而节省时间。此外,基因转移/基因组编辑的效率和意外易位的检测可以在单次检测中进行(图3)。
a,siRNA名称/方向序列atp6v1b1_#1 sense 5' - gacaacuucgccaucgucu-3'反义5'-agacgauggcgaaguugu -3'atp6v1b1_#2 ′ B, qPCR primers Gene/direction Sequence ATP6V1B1 Fw 5 ′ -CAGCAGGCTCAGACACTGG-3 ′ Rev 5 ′ -CCCAGGCCTGCTGTCTATCTC-3 ′ Cyclin D1 Fw 5 ′ -CCGTCCATGCGGAAGATC-3 ′ Rev 5 ′ -ATGGCCAGCGGGAAGAC-3 ′ p21 Fw 5 ′ -AGTCAGTTCCTTGTGGAGCC-3 ′ Rev 5 ′ -CATTAGCGCATCACAGTCGC-3 ′ GAPDH Fw 5 ′ -AGAAGGCTGGGGCTCATTTG-3 ′ Rev 5 ′ -AGGGGCCATCCACAGTCTTC-3 ′ AccuTarget Negative Control siRNAs, catalogue no.SN-1013(Bioneer Corporation)。fw,前进; REV,反向; siRNA,小干扰RNA; ATP6V1B1,ATPase H+运输V1亚基B1。
A部分 - 生物素化模板是通过质粒或合成DNA构建体中靶序列的PCR扩增产生的。此过程使用T7启动子上游至少30-100个碱基对的生物素化正向引物和非生物素化的反向引物。在设计QPCR分析以评估模板浸出时,T7启动子和正向引物之间的距离更大。另外,可以使用Biotin-DUTP在5'悬垂序列中通过填充填充物进行生物素化,这取决于正确的质粒设计。然后将生物素化模板直接固定到dynabeads
蜡状细菌在牛奶和乳制品中的发生归因于卫生方案不足,因此导致了两种胃肠道疾病:肠毒素触发的罕见催眠症和腹泻疾病。目前的研究旨在克服通过在聚合酶链反应(PCR)中掺入未改性金纳米颗粒(GNP)来检测低细菌浓度的局限性。Bacillus cereus,与常规PCR和SYBRGREEN QPCR相比,以检测NHE基因。基因是一个关键的毒力因子,它编码与非溶血性肠毒素产生有关的蛋白质。结果表明,将GNP添加到PCR反应中增强了DNA的产量,并使检测到10 2份Cereus DNA的副本,而使用标准PCR的10 3。GNPS辅助PCR以10 2 CFU/ml的尖刺样品检测到蜡状芽孢杆菌,而常规PCR则需要10 3 CFU/mL。sybrgreen qpcr也可以在10 2 DNA拷贝和10 2 CFU/ml的峰值牛奶中进行检测。GNPS辅助PCR特异性扩增了蜡状芽孢杆菌,而不是其他细菌,例如枯草芽孢杆菌,大肠杆菌,金黄色葡萄球菌,单核细胞增生李斯特氏菌和沙门氏菌,表现出分析特异性。总体而言,GNP提高了蜡状芽孢杆菌检测的PCR敏感性。关键字: - 肠毒素;蜡状芽孢杆菌;牛奶; pcr;金纳米颗粒; sybrgreen。
特应性皮炎(AD)是一种皮肤炎症性疾病,其中机会性病原体金黄色葡萄球菌既普遍又丰富。S.金黄色葡萄球菌具有几种分泌的毒力因子,这些因子在感染模型中具有良好的功能,但尚不清楚这些细胞外微生物因子是否在AD的背景下是否相关。为了解决这个问题,我们设计了一种与文化无关的方法来检测和量化在皮肤部位表达的金黄色葡萄球菌毒力因子。我们利用rnase-h - 依赖性多重PCR进行了从胶带中提取的反转录的RNA的前透明化,这些RNA从具有不同严重程度的皮肤部位采样的患者的胶带条中提取,并评估了使用qPCR使用QPCR的S. aureus毒力因子的表达。我们观察到疾病严重程度增加的位点可行的金黄色葡萄球菌丰度增加,并且在AD皮肤部位表达了许多毒力因子。令人惊讶的是,与非静电对照相比,我们没有观察到病变部位的毒力因子的任何显着性。总体而言,我们利用了一个可靠的测定法直接检测和量化AD皮肤病变部位的可行金黄色葡萄球菌及其相关的毒力因子。该方法可以扩展以研究各种皮肤病学部位的皮肤微生物基因的表达。
摘要:化疗药物耐药性的产生阻碍了癌症的临床治疗。微小RNA (miRNA/miR) 已被证明在许多类型癌症的耐药性中起着至关重要的作用。先前报道称 miR-139-5p 与人鼻咽癌细胞和结直肠癌细胞的顺铂 (DDP) 敏感性有关。然而,miR-139-5p 对非小细胞肺癌 (NSCLC) 细胞 DDP 敏感性的影响和潜在机制尚未完全阐明。在本研究中,通过逆转录定量聚合酶链反应 (RT-qPCR) 和蛋白质印迹法检测 NSCLC 组织中 miR-139-5p 和同源框蛋白 Hox-B2 (HOXB2) 的表达。随后,研究了 miR-139-5p 对体外 NSCLC 细胞 DDP 敏感性的影响。使用 Cell Counting Kit-8 检测细胞增殖情况,Western blotting 检测 HOXB2、磷酸化 (p)-PI3K、p-AKT、caspase-3 和 cleaved-caspase-3 的蛋白表达,RT-qPCR 检测 miR-139-5p 的表达以及 HOXB2、PI3K、AKT 和 caspase-3 的 mRNA 表达水平。流式细胞术检测细胞凋亡率。结果表明,NSCLC 组织中 miR-139-5p 的表达显著低于癌旁组织。此外,miR-139-5p 通过调节 PI3K/AKT/caspase-3 信号通路,增加细胞凋亡,抑制 DDP 诱导的 NSCLC 细胞增殖。此外,HOXB2 被确定为
图1。对影响RT-DNA产生的反性NCRNA的修改。a。下面的Eco1 119反元操作子的示意图,以及上面的NCRNA(粉红色)转换为RT-DNA(蓝色)。b。分析120的内源性RT-DNA在BL21-AI野生型细胞(WT)中产生的内源性RT-DNA和RetroN 121操纵子(KO)的敲除。c。 RT-DNA的QPCR分析示意图。蓝色/黑色底漆对将使用122 RT-DNA和质粒的MSD部分作为模板进行扩增。红色/黑色底漆对仅使用123作为模板进行扩增。d。 QPCR仅在质粒上富集RT-DNA/质粒模板,相对于未诱导的条件,124。圆圈显示三个生物学重复中的每一个。e。 125个变体库构建和分析的示意图。f。 RT-DNA测序准备管道的示意图。g。 126每个茎长度变体的相对RT-DNA丰度占WT的百分比。圆圈代表三个127个生物学重复中的每一个。wt长度以蓝色显示,并以100%的虚线显示。h。示意图说明128 reton ncRNA的A1和A2区域。i。 A1/A2区域的变体与129 MSD环中的条形码链接用于测序。j。每个A1/A2长度变体的相对RT-DNA丰度占WT的百分比。130个圆圈代表三个生物学重复中的每一个。wt长度以蓝色显示,并以131%的虚线100%显示。补充表1中的所有统计数据。132
50 次反应 产品描述 核 DNA (nucDNA) 损伤被广泛认为是癌症、神经退行性疾病、线粒体功能障碍和各种与年龄相关的疾病发展的关键因素。核 DNA 损伤是评估药物和环境毒素基因毒性的重要生物标记。ScienCell 的人类核 DNA 损伤定量 qPCR 检测试剂盒 (HNDQ) 的工作原理是各种 DNA 损伤可以阻碍 DNA 聚合酶的进展。因此,在相同条件下,损伤较少的 DNA 比受损的 DNA 更容易扩增。损伤水平可以用损伤的泊松分布来量化,以每千碱基对的损伤数或目标样本与对照样本的完整 nucDNA 的百分比表示。此外,我们的检测方法可以通过测量去除 DNA 损伤剂后目标 DNA 扩增随时间的恢复来跟踪 DNA 修复动力学。该检测方法监测 nucDNA 的完整性。引物组(目录号 #9008a 和目录号 #9008b)可识别和扩增人类核DNA 上最保守区域的序列。我们利用 2X LanaRana 长距离 PCR 主混合物(目录号 #MB6098)和人类长核DNA 引物组(目录号 #9008a)来扩增 8.1 kb 长的 DNA 片段。为了扩增 151 bp 短核DNA 片段,我们使用 2X GoldNStart TaqGreen qPCR 主混合物(目录号 #MB6018a-1)和人类短核DNA 引物组(目录号 # 9008b)。未受损(未处理)和受损(紫外线处理)细胞中的人类 DNA 作为反应的阳性和阴性对照。
摘要研究ND:YAG(1064 nm)光生物调节对脂肪组织衍生的干细胞(ADSC)在体外和体内的多节分分化和免疫调节电位的影响。对于体外实验,将细胞分为对照组(非辐照对照ADSC)和光生物调节组。0.5 j/cm 2,1 j/cm 2,2 j/cm 2和4 j/cm 2用于增殖测定;对于ADSC掺杂分化测定,应用了0.5 j/cm 2,1 j/cm 2; 1 J/cm 2用于迁移和免疫调节测定法。通过QPCR,油红O染色和艾丽莎白红染色评估分化能力。通过qPCR和人类细胞因子阵列评估免疫调节电位。DSS诱导的结肠炎模型。 用于测试光生物调节对体内ADSC免疫调节电位的影响。 nd:基于yag的光生物调节剂量依赖性地促进了ADSC的增殖和迁移; 1 J/cm 2对增殖表现出最佳的促进作用。 此外,nd:yag光生物调节促进了ADSC的成骨分化和棕色脂肪脂肪成生化分化。 潜在的免疫调节测定法显示了ND:YAG光生物调节改善了ADSC的抗炎能力和光生物调节受照射的ADSC有效地减轻了DSS诱导的结肠炎在体内的严重程度。 我们的研究表明:YAG光生物调节可能会增强ADSC的多节分分化和免疫调节电位。 这些结果可能有助于增强ADSC的临床应用治疗作用。DSS诱导的结肠炎模型。用于测试光生物调节对体内ADSC免疫调节电位的影响。nd:基于yag的光生物调节剂量依赖性地促进了ADSC的增殖和迁移; 1 J/cm 2对增殖表现出最佳的促进作用。此外,nd:yag光生物调节促进了ADSC的成骨分化和棕色脂肪脂肪成生化分化。潜在的免疫调节测定法显示了ND:YAG光生物调节改善了ADSC的抗炎能力和光生物调节受照射的ADSC有效地减轻了DSS诱导的结肠炎在体内的严重程度。我们的研究表明:YAG光生物调节可能会增强ADSC的多节分分化和免疫调节电位。这些结果可能有助于增强ADSC的临床应用治疗作用。然而,需要进一步的研究来探索ND:YAG光生物调节的机制,从而促进了ADSC的多素分化和免疫调节电位。