是普遍的信念,即需要构建实用程序尺度量子计算机能够执行无法触及的经典计算机的计算需要量子错误纠正技术。在所需的物理量子数的数量方面,对表面代码进行了最广泛研究并高度优化的量子误差校正代码非常大量资源。最近提出了一种有希望的替代量子低密度平价检查(QLDPC)代码。这些代码的资源密集程度要少得多,与实用的表面代码实现相比,每个逻辑量子的物理Qubs最多需要10倍。因此,QLDPC代码的成功应用将大大减少时间表到达可以使用Shor's算法和QPE(如Shor的算法)加速的算法运行算法的量子计算机。迄今为止,QLDPC代码已在量子记忆的背景下进行了主要研究。在QLDPC代码中实现任意逻辑Clifford运算符在电路深度方面有效的方法没有已知的方法。与已知的实施T门的方法结合使用,Clifford组的有效实现解锁了资源有效的通用量子计算。在本文中,我们介绍了一个新的QLDPC代码系列,该家族可以通过横向操作有效地汇编Clifford组。我们的施工最多可以在O(M)综合征提取回合中执行任何M Qubit Clifford操作,从而超过了最新的晶格手术方法。我们运行深度126逻辑电路的电路级模拟,以表明我们的QLDPC代码中的逻辑操作达到了接近内存的性能。这些结果表明,QLDPC代码是将所有逻辑量子算法所需的资源减少到10倍的可行手段,从而解开了大量减少的时间表以商业上有价值的量子计算。
简介。在物理学中,评估能量差异而不是总能量是普遍存在的。特定哈密顿量的基态和第一激发态之间是否存在间隙与凝聚态 [ 1 ] 和高能物理 [ 2 ] 中的突出问题有关,也是多体物理学和理论计算机科学 [ 3 ] 之间深层联系的核心。无数的光谱技术最终将单个哈密顿量的两个或多个本征态的能量进行比较,作为特定物质的众多识别特征之一。本文关注的是使用量子计算机来实现这一目的。我们将感兴趣的哈密顿量表示为 H ,其中 N = 2 n = dim H 。H 的基态由其特征值 | E 0 ⟩ 标记,其上方的第 a 个本征态为 | E a ⟩。通过反复准备两个能量本征态的特定叠加态,使它们经历幺正演化 W(H)[4-7],撤消准备过程,并在计算基础中进行测量(见图 1b),我们可以推断出两个本征态之间的能量差异,而无需辅助量子比特 [8] 或受控幺正操作。这不同于其他量子相位估计 (QPE) 方法 [9],它们使用一个或多个辅助量子比特为编码物理系统的寄存器上累积的相位提供参考 [10-19]。我们的程序受到鲁棒相位估计 (RPE) 算法的启发,该算法被引入用于表征和校准单量子比特门的相位(即旋转角度)[20]。 W(H) 的一种常见形式是控制固定时间内汉密尔顿演化的指数映射的近似值 [21,22],尽管它也可以采用其他形式,其中相位是特征值的已知函数 [5,23]。虽然相位估计广泛应用于量子计算机上的特征值计算,但 W(H) 的物理意义是在 n 个量子比特的希尔伯特空间中编码感兴趣系统的自由度的结果。虽然我们考虑分子系统中相互作用电子的特定编码 [24,25],但我们注意到我们的结果可以扩展到其他领域,包括与核物质相关的领域 [26],
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
量子计算机已显示出解决传统计算机目前无法解决的特定问题的潜力,但它们在比传统计算机更快地解决工业问题方面仍处于起步阶段[1,2]。量子计算机的近期应用之一是量子化学(见参考文献[3-7]及其参考文献),其重点是波函数理论(WFT),旨在对电子结构问题进行数值精确解。虽然量子相位估计(QPE)算法原则上能够完全解决该问题[8-12],但所需的电路深度阻碍了它们在嘈杂的中尺度量子(NISQ)时代的应用[13]。因此,人们开发出了更有效的算法,例如量子随机漂移协议 [ 14 ] ,或使用幺正函数的线性组合和量子比特化形式直接模拟哈密顿量 [ 15 – 18 ] 。为了更适应 NISQ 时代,人们专门设计了几种变分量子算法(混合量子-经典),用于制备基态 [ 19 – 23 ] 和最近的激发态 [ 24 – 26 ] ,并计算原子力和分子特性 [ 27 – 30 ] 。然而,尽管量子计算机宣布了指数级的加速,但何时才能真正在实践中实现实际的量子优势仍不清楚,而且在不久的将来期待任何有重大影响的应用都是困难的 [ 31 – 34 ] 。事实上,量子算法在量子化学中的应用仍然受到可负担系统规模的限制,因为系统的大小决定了所需的量子比特数。尽管量子设备上的量子比特数有望迅速增加,但未来几年预计还不会出现能够处理真实量子化学系统的稳定机器。在 NISQ 时代的噪声量子计算机中,高精度结果是难以实现的,对于具有重大社会和工业影响的相关应用来说,对化学精度的追求仍然是一条漫长的道路。目前,对化学、凝聚态物理甚至生物学等大型系统的经典计算主要依赖于密度泛函理论 (DFT) [ 35 , 36 ],由于它仅相对于系统尺寸以立方倍数缩放,因此不能预先预期其具有量子优势。相反,最近的研究重点是利用矩阵积态、机器学习和量子计算机构建精确的交换关联 (XC) 密度泛函,而这种密度泛函的精确确定是 QMA 难题 [37]。人们还研究了如何解决 Kohn-Sham 势反演问题,其中在量子计算机上测量随时间演化的多体系统的密度 [44-46]。其他有趣的工作分别将 DFT 及其时间相关版本的 Hohenberg-Kohn 定理和 Runge-Gross 定理推广到量子比特哈密顿量,从而有可能将量子计算中的多体可观测量近似为密度的单量子比特量函数 [ 47 , 48 ]。但上述工作均未旨在解决量子计算机上的 Kohn-Sham (KS) 非相互作用问题。只有少数尝试在量子计算机上执行平均场近似,例如在 12 量子比特平台上具有里程碑意义的 Hartree-Fock 实验 [ 49 ],或在量子退火器上计算单粒子密度矩阵 [ 50 ]。在这两种情况下,都没有预见到实际的量子优势。因此,DFT 仍然应用于经典计算机,尽管有时通过使用嵌入策略在量子计算机上与 WFT 结合 [ 6 , 51 , 52 ]。在这项工作中,我们研究了使用数字量子计算机扩展 DFT 等平均场型方法的好处。讨论了一种可能的量子优势,即 KS 汉密尔顿量与辅助相互作用汉密尔顿量之间的反直觉映射,以计算基础表示,这与几十年来的做法相反。有了这种新的编码,在某些理想情况下,平均场型汉密尔顿量可以在量子计算机上以指数级的速度得到解决,类似于相互作用汉密尔顿量。