与传统计算机 [1] 相比,量子计算 (QC) 在特定问题上具有显著的计算优势。尽管目前量子设备存在噪声和缺陷等局限性,但人们仍在做出巨大努力以实现量子优势。其中一个突出的关注领域是量子机器学习 (QML),它利用量子计算原理来增强机器学习任务。大多数 QML 算法依赖于量子-经典混合范式,该范式将计算任务分为两个部分:量子计算机处理受益于量子计算的部分,而传统计算机处理它们擅长的部分。变分量子算法 (VQA) [2] 构成了当前量子机器学习 (QML) 方法的基础。QML 已在各种机器学习任务中取得成功,包括分类 [3]–[6]、顺序学习 [7]、[8]、自然语言处理 [9]–[12] 和强化学习 [13]–[19]。在这些领域中,量子强化学习 (QRL) 是一个新兴领域,研究人员正在探索应用量子计算原理来提高强化学习代理的性能。本文介绍了 QRL 的概念和最新发展。
摘要:量子增强学习(QRL)作为加固学习的分支(RL)出现,该分支在算法的体系结构中使用Quantumsodules。QRL的一个分支集中在函数近似值作为函数近似器中,以变异量子电路(VQC)的替换为替换神经网络(NN)。初始作品在具有离散作用空间的经典环境上显示出令人鼓舞的结果,但是VQC的许多拟议的架构设计选择缺乏详细的研究。因此,在这项工作中,我们研究了VQC设计选择的影响,例如角度嵌入,编码块体系结构以及后处理对QRL代理的训练能力的影响。我们表明,VQC设计极大地影响了训练性能,并为分析的组件提供了增强功能。此外,我们还展示了如何设计QRL代理,以便通过连续的动作空间求解经典环境,并基于我们的代理对经典的前馈NNS进行基准测试。
摘要 — 量子计算 (QC) 和神经组合优化 (NCO) 的进步代表着解决复杂计算挑战的有希望的步骤。一方面,变分量子算法(例如 QAOA)可用于解决各种组合优化问题。另一方面,同一类问题可以通过 NCO 解决,这种方法已显示出有希望的结果,特别是自引入图神经网络以来。鉴于这两个研究领域的最新进展,我们引入了基于汉密尔顿的量子强化学习 (QRL),这是一种 QC 和 NCO 交叉的方法。我们直接根据组合优化问题的汉密尔顿公式对我们的假设进行建模,这使我们能够将我们的方法应用于广泛的问题。与硬件高效模拟相比,我们的模拟表现出良好的可训练性,同时与以前的方法不同,它不限于基于图的问题。在这项工作中,我们评估了基于汉密尔顿的 QRL 在一系列组合优化问题上的表现,以证明我们的方法的广泛适用性,并将其与 QAOA 进行比较。索引术语 — 量子强化学习、组合优化、神经组合优化
摘要 - 识别最佳加入订单(JOS)在数据库研究和工程中引人注目。由于较大的搜索空间,已建立的经典方法依赖于近似和启发式方法。最近的努力成功地探索了JO的强化学习(RL)。同样,RL的量子版本也受到了相当大的科学关注。然而,如果他们能够通过改进的量子处理器获得可持续的总体实践优势,这是一个悬而未决的问题。在本文中,我们提出了一种新的方法,该方法基于混合变量量子ANSATZ,使用量子增强学习(QRL)。它能够处理一般的灌木丛树木,而不是根据基于量子( - 启发)优化的方法来求助于更简单的左底变体,但需要多个幅度较少的量子,即使对于nisq后系统来说,这也是一个稀缺的资源。尽管电路深度中等,但ANSATZ超过了当前的NISQ功能,这需要通过数值模拟进行评估。虽然QRL在解决结果质量方面解决JO问题(尽管我们看到奇偶校验)可能并没有明显超过分类方法,但我们发现所需的可训练参数的大幅度降低。此优势实际上相关的方面,从较短的培训时间到经典的RL,涉及的经典优化通过或更好地使用可用培训数据,并且适合数据流和低延迟处理方案。索引术语 - Quantum机器学习,加固学习,查询优化,数据库管理系统我们的全面评估和仔细的讨论对可能的实际量子优势提供了平衡的观点,为将来的系统性处理提供了见解,并允许定量评估数据库管理系统最关键问题之一的量子方法的权衡。
摘要 — 本教程提供了引人入胜的量子机器学习 (QML) 领域的实践介绍。从量子信息科学 (QIS) 的基础开始——包括量子比特、单量子比特门和多量子比特门、测量和纠缠等基本元素——课程迅速进展到基础 QML 概念。参与者将探索参数化或变分电路、数据编码或嵌入技术以及量子电路设计原理。深入研究后,与会者将研究各种 QML 模型,包括量子支持向量机 (QSVM)、量子前馈神经网络 (QNN) 和量子卷积神经网络 (QCNN)。本教程突破界限,深入研究前沿 QML 模型,例如量子循环神经网络 (QRNN) 和量子强化学习 (QRL),以及量子联合机器学习等隐私保护技术,并通过具体的编程示例提供支持。在整个教程中,所有主题和概念都通过在量子计算机模拟器上执行的实际演示变得生动有趣。课程内容专为新手设计,适合那些渴望踏上 QML 之旅的人。与会者还将获得有关进一步阅读材料的指导,以及课程结束后可以探索的软件包和框架。
网络威胁的快速发展使得传统安全方法不足以管理日益复杂的风险。本研究引入了一种量子机器学习网络安全框架,该框架利用量子计算和机器学习来增强多维度的网络安全。该研究采用了一种结构化方法,首先集成量子密钥分发 (QKD) 进行安全密钥交换,然后部署量子神经网络 (QNN) 和量子支持向量机 (QSVM) 进行异常检测和对抗威胁管理。该框架还结合了用于自主事件响应的量子强化学习 (QRL)、用于使用生物特征和行为数据进行身份验证的量子身份验证模块以及用于遵守法规的由量子合规分析仪支持的策略合规界面。实验结果表明网络安全指标有了显着改善,包括威胁检测准确率达到 96%,事件响应时间缩短 28%,合规模拟成功率达到 96%。这些发现强调了该框架能够提供适应性强、可扩展且高效的网络安全解决方案,以应对现代挑战。这项研究朝着将量子技术融入实际网络安全应用迈出了重要一步,为未来智能、安全和适应性防御系统的创新铺平了道路。