高性能外部气体淬火系统提供业内最低阻力、最高效率的气流,可在高达 15 PSIG(2 巴)的压力下快速冷却。适当尺寸的电机 4 驱动计算机平衡的径向叶片风扇,使淬火气体直接通过水气热交换器再循环,然后高速进入热区。独特的锥形石墨气体喷嘴定位在工作负荷处引导淬火气体,以实现最佳冷却效果。
可充电电化学细胞或可充电电池,其中正极和负电极都是互相化合物(与电极材料晶格的离子或准原子形式存在的插相化合物(嵌入的锂都存在),它们均在任何电极中构造,没有金属液体。
中央旋转模型提供了对中央自由度与周围旋转介观环境之间相互作用的理想描述。我们表明,在中心有旋转1的模型家族,而任意强度与周围旋转的XX相互作用是可以集成的。具体而言,我们得出了一组广泛的保守量,并使用贝特·安萨兹(Bethe Ansatz)获得了确切的本征态。与同类的极限一样,各州分为两个指数级别的大阶层:明亮的状态,在这种状态下,自旋-1与周围环境和黑暗状态纠缠不清,其中它不是。在占用性上,明亮的状态取决于其对中央自旋极化为零的状态的体重进一步分为两类。这些类别以淬灭动力学进行探测,从而阻止中央自旋达到热平衡。在单个自旋式扇形中,我们明确地构建了明亮的状态,并表明这些特征态半定位是中心旋转的振荡动力学。我们将集成性与密切相关的Richardson-Gaudin模型的紧密相关类别相关联,并猜想Spins Central Spin XX模型对于任何s都可以集成。
淬火和退火是量子系统时间演化中的两个极端:退火探索具有缓慢变化参数的汉密尔顿量的平衡相,可用作解决复杂优化问题的工具。相反,淬火是汉密尔顿量的突然变化,产生非平衡情况。在这里,我们研究了这两种情况之间的关系。具体而言,我们表明,退火间隙的最小值(量子退火算法的一个重要瓶颈)可以从描述淬火后动态量子态的动态淬火参数中揭示出来。结合包括神经网络训练在内的统计工具,可以利用淬火和退火动力学之间的关系,从淬火数据中重现退火间隙的完整功能行为。我们表明,通过这种方式获得的有关退火间隙的部分或全部知识可用于设计具有实际解决时间优势的优化量子退火协议。我们的结果是通过模拟随机 Ising Hamiltonian 获得的,代表了精确覆盖问题的难以解决的实例。
简介。— 具有约束动力学的系统在非平衡物理的许多领域都引起了人们的兴趣。动力学约束模型 (KCM) [1 – 3] 为解释 [4 – 6] 玻璃中缓慢和非均匀动力学的出现提供了一个框架 [7 – 10] ,它们的研究促进了动态大偏差和轨迹集合方法的发展 [11 – 13] 。在阻塞条件下,量子约束动力学自然出现在诸如里德堡原子之类的系统中 [14 – 17] ,这引发了关于在没有无序的情况下缓慢热化和非遍历性的问题 [18 – 31] 。实现动力学约束的最简单设置是在具有离散动力学的晶格系统中,例如细胞自动机 [32,33] 或量子电路 [34] 。对于这样的设置,已经有可能获得许多精确的结果,这些结果巩固了我们对量子动力学的理解,包括关于算子动力学、信息传播和热固定(参见,例如,参考文献。[35 – 66] )。量子电路对于量子系统和量子计算的实验模拟也至关重要,它已被用于展示量子优势、执行随机基准测试以及研究非平衡 Floquet 动力学 [67 – 77] 。在这里,我们考虑通过研究量子 East 模型 [78 – 80] 的电路版本来表征动力学约束的动力学效应,该模型本身是经典 East 模型 [2] 的量子泛化。使用与对偶单元电路 [53,61,61] 类似的方法,我们精确地解决了热化动力学问题。
摘要:Imry – Maphenomenon,预测1975年Byimryandmaandmaandrigol,由Aizenman和Wehr于1989年建立,并指出,低维旋转系统的第一阶相变为“圆圆形”,通过添加了Quench的随机空间,以添加了Quench Quench的随机空间,从而添加了Quench量的随机量,从而导致定量的量化,从而使定量进行了量化。该现象适用于尺寸d≤2的宽类自旋系统,并适用于具有连续对称性的自旋系统d≤4。这项工作提供了Imry -MA现象的定量估计值:在侧长L的立方域L中,我们研究边界条件对耦合到随机场的空间和热平均值的影响。我们表明,边界效应在一般二维自旋系统中至少与日志L的逆强力一样降低。对于具有连续对称性的系统,我们表明边界效应在两个和三个维度中至少与L的逆强力降低,并且至少在四个维度中的log log L的逆强力降低。最后,我们为翻译式吉布斯陈述了部分唯一性结果,并证明,对于几乎每个随机范围的实现,所有此类状态都必须同意耦合与随机范围的数量的热平均值。特定感兴趣的模型包括随机的Q-State Potts模型,Edwards-Anderson自旋玻璃模型和随机型号旋转O(N)模型。
智能内容发现 我们的 AI 学习助手确保用户可以专注于学习和参与内容,而不是花时间搜索内容。 全面的内容选择 Quench AI 从各种平台获取视频内容,包括 YouTube 和我们的独家订阅库。 个性化专家指导 Quench AI 还允许用户与主题专家联系。 用户可以向他们最喜欢的专家预订辅导或指导课程,从而进一步增强他们的学习体验。
摘要 - 碰撞能量显着的圆形粒子加速器超出LHC,需要具有较高磁场的磁铁。对这种磁体的淬火保护是出于两个主要原因。首先,高能量密度和相对较高的淬火需要高性能的淬火保护系统。第二,在预计将运行的加速器机器中保护系统的集成数十年,要求易于整合,健壮和冗余元素。最近提出了一种名为Secondary Cliq(S-CLIQ)的新的且有前途的保护方法。它依赖于辅助正常线圈,这些线圈与线圈电隔离以保护但在磁性上耦合到它们。在磁铁淬灭检测时,耦合线圈具有双重功能:首先,它们会在超导体中引起高耦合损失,这足以使大多数绕组在几个Mil-mil-Liseconds中传递到正常状态;其次,他们通过磁耦合提取磁铁存储的一部分。在这项工作中,提出了基于放置在赛道磁铁顶部和底部的辅助线圈的S-CLIQ系统,并显示了由薄1毫米2线制成的。表明,在热点温度和地面峰值电压方面,淬灭保护性能优于替代方法,例如能量提取,淬火加热器和CLIQ。
4 T dipole with a new Top of 20 K (> 10 K of margin) Frenet-Serret frame used for the conductor (avoid hard way bending) Straight geometry just to start the study (HTS is already difficult enough) Two design options: 2-tapes (980 A) and 4-tapes cable (1990 A) Quench protection is demanded (Cu stabilizer added for this)
• Scaling up NI coils results in a very slow ramp time due to high L/R time constant • Putting novel partial insulation (PI) between turns allows desired, higher, turn-to-turn resistance (R) • L/R ramp time constant can be reduced to suit coil size and application • PI allows fast ramping of large coils, but retains the excellent quench stability & defect tolerance demonstrated in our solder potted NI线圈