通过外延应变制备锰氧化物薄膜 Dong Li 1† 、Bonan Zhu 2† 、Dirk Backes 3 、Larissa SI Veiga 3 、Tien-Lin Lee 3 、Hongguang Wang 4 、Qian He 5 、Pinku Roy 6,7 、Jiaye Zhang 8 、Jueli Shi 8 、Aiping Chen 6 、Peter A. van Aken 4 、Quanxi Jia 7 、Sarnjeet Dhesi 3 、David O. Scanlon 2,3 、Kelvin HL Zhang 8* 和 Weiwei Li 1* 1 南京航空航天大学物理学院,工业和信息化部空天信息材料与物理重点实验室,南京 211106,中国 2 伦敦大学学院化学系,伦敦 WC1H 0AJ,英国 3 Diamond Light Source Ltd.,哈威尔科学与创新园区,迪德科特,牛津郡 OX11 0DE,英国 4 马克斯普朗克固体研究所,Heisenbergstr. 1, 70569,斯图加特,德国 5 新加坡国立大学材料科学与工程系,新加坡,117575,新加坡 6 综合纳米技术中心 (CINT),洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87545,美国 7 纽约州立大学布法罗分校材料设计与创新系,纽约州布法罗 14260,美国 8 厦门大学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,厦门 361005,中国 电子邮件:kelvinzhang@xmu.edu.cn,wl337@nuaa.edu.cn † 这些作者对这项工作做出了同等贡献
刘宁坤, 1 , 2 , 9 徐艳卓, 1 , 2 , 9 李奇, 1 曹宇鑫, 3 杨德昌, 4 刘莎莎, 1 , 2 王小康, 3 米英杰, 1 , 5 刘阳, 1 , 2 丁晨曦, 1 , 6 刘艳, 1 , 2 李勇, 7 袁耀武, 8 高戈, 4 陈金峰, 1 , * 钱伟强, 3 , * 张晓明 1 , 2 , 10 , * 1 中国科学院动物研究所, 害虫鼠类综合治理国家重点实验室, 北京 100101 2 中国科学院大学中国科学院生物相互作用卓越中心, 北京 100049 3 国家重点实验室蛋白质与植物实验室北京大学现代农学院基因研究中心,北京 100871,中国 4 北京大学生命科学学院、BIOPIC & ICG 和生物信息学中心,蛋白质与植物基因国家重点实验室,北京 100871,中国 5 河南师范大学生命科学系,河南新乡 453007,中国 6 河北大学生命科学学院,河北保定 071002,中国 7 东北农业大学生命科学学院,黑龙江哈尔滨 150038,中国 8 康涅狄格大学生态与进化生物学系,75 North Eagleville Road, Unit 3043, Storrs, CT 06269,美国 9 这些作者贡献相同 10 主要联系人 *通讯地址:chenjinfeng@ioz.ac.cn (JC),wqqian@pku.edu.cn (WQ), zhangxm@ioz.ac.cn (XZ) https://doi.org/10.1016/j.chom.2022.07.001
作者感谢 Nancy Qi、Seema Jayachandran、Ameet Morjaria 和 Chris Udry 的指导;阿里尔·本伊沙,尼古拉·比安奇,理查德·布卢姆,利维·博克赛尔,曹一鸣,里卡多·达希斯,阿克塞尔·德雷尔,鲁本·杜兰特,乔治·叶戈罗夫,雷·菲斯曼,安德烈亚斯·福克斯,马丁·菲斯宾,凯·格林,悉达多·乔治,约翰内斯·豪斯霍费尔,马泰奥·马格纳里科特,阿列克谢·马卡林,泰德·米格尔,杰西卡·潘,迈克尔Porcellacchia、Paul Schaudt、Tuan-Hwee Sng、Miguel Talamas、Rainer Thiele、Christoph Trebesch、Shaoda Wang、Jaya Wen、David Yang、Song Yuan 以及 NBER、巴塞罗那 GSE 夏季论坛以及无数其他会议和研讨会的参与者提供了有用的评论; Kevin Acker、Aidan Chau、Manfred Elfstrom、Wenwei Peng、Shaoda Wang 和 Cheryl Wu 提供数据帮助;John Acker 提供文字编辑;Zhentao Jiang、O'Rianna Yew Jingqing、Lan Wang、Zixin Wei、Zhiyao Xu、Johnny Lee Zhuang Yu、Tianyu Zhang,尤其是 Chuyue Tian 提供出色的研究协助。作者非常感谢教育部 AcRF Tier 1 拨款 FY2023-FRC2-006 的资助。本文部分内容的旧版本之前以“中国对外援助:政治决定因素和经济影响”为标题发布,首次提交于 2018 年 6 月,并于 2021 年 10 月作为草稿发布。
Maoli Gong, 2, 2, 4 , 61 Jiayi Li, 5, 6, 61 Zilong Qin, 7, 61 9 Haoran Liu, 5 Friends, 5 Joel A. Roses, 10 Ana S.A. Sullivan, 12, Tianyun Wang, 16, 17 Susan M. Hiatt, Lahner, 21 Sherr Elliott, 22 Yiyan Ruan, 23 Cyril Mignot, 24 Boris Keren, 24 Hua Xie,Julie Gauthier,36,37 Jacques L. Michaud,37,38
马歇尔计划(1948-1952 年)是历史上最大的援助转移。本文估计了该计划对意大利战后经济发展的影响。它利用了意大利各省收到的重建补助金价值之间的差异。能够进一步现代化基础设施的省份农业产量增长更快,尤其是易腐烂作物。在同样的省份,我们观察到对节省劳动力的机器的投资增加,更多公司进入工业部门,以及工业和服务业劳动力的扩大。作者感谢 Ran Abramitzky、Andy Atkeson、Paula Beltran、Thor Berger (讨论者)、Nicholas Bloom、Meghan Busse、Dora Costa、Pascaline Dupas、Francois Geerolf、Adriana Lleras-Muney、Gabriel Mathy (讨论者)、Therese McGuire、Katherine Meckel、Juan Morales (讨论者)、Melanie Morten、Tommaso Porzio、Nancy Qian、Melanie Wasserman 以及加州大学洛杉矶分校、西北大学、加州大学圣地亚哥分校、加州大学伯克利分校、IFN 斯德哥尔摩会议、巴塞罗那 GSE 夏季论坛、计量经济学会年会、NBER DAE 夏季学院、法国银行巴黎经济学院国际宏观历史视角研讨会、2018 年 EHA 会议和 2021 年 SED 会议的研讨会和会议参与者提出的有益意见。 Jiarui Cao、Lorenzo Cattivelli、Antonio Coran、Zuhad Hai、Jingyi Huang、Matteo Magnaricotte 和 Fernanda Rojas Ampuero 提供了出色的研究协助。作者非常感谢经济史协会通过 Arthur H. Cole 基金提供的资金支持。
Jingyun Yang, Wei Wang, Zimin Chen, Shuaiyao Lu, Fanli Yang, Zhenfei Bi, Linlin Bao, Fei Mo, Xue Li, Yong Huang, Weiqi Hong, Yun Yang, Yuan Zhao, Fei Ye, Sheng Lin, Wei Deng, Hua Chen, Hong Lei, Ziqi Zhang, Min Luo, Hong Gao, Yue Zheng, Yanqiu Gong, Xiaohua Jiang, Yanfeng Xu, Qi Lv, Dan Li, Manni Wang, Fengdi Li, Shunyi Wang, Guanpeng Wang, Pin Yu, Yajin Qu, Li Yang, Hongxin Deng, Aiping Tong, Jiong Li, Zhenling Wang, Jinliang Yang, Guobo Shen, Zhiwei Zhao, Yuhua Li, Jingwen Luo, Hongqi Liu, Wenhai Yu, Mengli Yang, Jingwen Xu, Junbin Wang, Haiyan Li, Haixuan Wang, Dexuan Kuang, Panpan Lin, Zhengtao Hu, Wei Guo, Wei Cheng, Yanlin He, Xiangrong Song, Chong Chen, Zhihong Xue, Shaohua Yao, Lu Chen, Xuelei Ma, Siyuan Chen, Maling Gou, Weijin Huang, Youchun Wang, Changfa Fan, Zhixin Tian, Ming Shi, Fu-Sheng Wang, Lunzhi Dai, Min Wu, Gen Li, Guangyu Wang, Yong Peng, Zhiyong Qian, Canhua Huang, Johnson Yiu-Nam Lau, Zhenglin Yang, Yuquan Wei, Xiaobo Cen, Xiaozhong Peng, Chuan Qin, Kang Zhang, Guangwen Lu & Xiawei Wei
在狭窄的间隙半导体或半学中,当带隙能量小于电子孔结合能时,电子和孔之间的有吸引力的库仑力可以诱导激发剂绝缘体(EI)基态。图1A中说明了规范相图。EI相在半导体相(E G> 0)和半阶段(E G <0)之间出现。相对向EI状态的相变是电子孔对的Bose-Einstein凝结。如图1b所示,电子和孔之间的有吸引力的库仑力在EI阶段在费米水平上产生带隙。1960年代的开创性理论(Mott,1961; Jerome等,1967; Zittartz,1967; Halperin and Rice,1968)之后进行了更详细的理论著作,揭示了BCS-BEC交叉从半导体侧到相图(Bronold and Fehske,2006; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronord; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; 2008; Phan等人,2010年)。尽管有理论成就,但对EIS的实验研究仅限于诸如TM(SE,TE)之类的少数材料(Neuenschwander and Wachter,1990; Bucher等,1991; Wachter等,2004)。ei的性质(se,te)并非部分原因是由于其磁性。Tise 2表现出电荷密度波(Disalvo等,1976)。通过角度分辨光发射光谱(ARPES)研究了电荷密度波的起源(Pillo等,2000; Rossnagel等,2002; Qian等,2007; Zhao等,2007)。虽然在早期
6 Riken综合医学科学中心发育遗传学实验室,1-7-22 Suehiro-Cho,Tsurumi-Ku,Yokohama,Kanagawa,Kanagawa 230-0045,日本。 摘要新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和神经胶质发生的顺序相。 多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。 PolyComb抑制性复合物1(PRC1)的组成在哺乳动物中高度多样,并被认为有助于细胞命运的上下文特异性调节。 在这里,我们对规范PRC1.2/1.4和非典型的PRC1.3/1.5的作用进行了侧面副副作用,所有这些作用均在NSC增殖和分化中表达。 我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。 从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。 因此,与非典型PRC1相比,在增殖,神经源和神经胶原相比,在增殖,神经源和神经胶原阶段期间,规范PRC1在不同的PRC1亚复合体中有助于不同的阶段,而是在NSC调节中起着更重要的作用。 NPC增殖和的精确空间和时间调节6 Riken综合医学科学中心发育遗传学实验室,1-7-22 Suehiro-Cho,Tsurumi-Ku,Yokohama,Kanagawa,Kanagawa 230-0045,日本。摘要新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和神经胶质发生的顺序相。多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。PolyComb抑制性复合物1(PRC1)的组成在哺乳动物中高度多样,并被认为有助于细胞命运的上下文特异性调节。在这里,我们对规范PRC1.2/1.4和非典型的PRC1.3/1.5的作用进行了侧面副副作用,所有这些作用均在NSC增殖和分化中表达。我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。因此,与非典型PRC1相比,在增殖,神经源和神经胶原相比,在增殖,神经源和神经胶原阶段期间,规范PRC1在不同的PRC1亚复合体中有助于不同的阶段,而是在NSC调节中起着更重要的作用。NPC增殖和在新皮层,茎和祖细胞开发过程中的引入最初是增殖的,然后再依次引起注定到不同皮质层的神经元,然后产生星形胶质细胞和少突胶质细胞(Lodato&Arlotta,2015年,2015年; Qian等人,2000年)。
1 有关这部小说的研究,请参阅参考书目。2 李千成,《启蒙小说》,第 108 页。3 有关续集这一体裁的研究,请参阅黄马丁,《蛇腿》。4 有关这些后续版本的最新研究,请参阅孙红梅,《变身猴子》。5 季羡林,《大唐西域集教主》;比尔,《西方佛教记录》。6 慧丽和彦聪,《大唐大慈恩寺三藏法事传》。7 我在“变身猴子”一文中讨论了三部主要的续集,摘自黄马丁主编的《蛇腿》,第 46–74 页。8 钱钟书,《管坠编》,第 2 卷:546–47 页;另请参阅李千成,《启蒙小说》,第 91–96 页,尤其是第 91–96 页。 91. 但这在《西游记》中是一个非常复杂的问题。9 但在女儿国和接下来的蝎子精情节中,为了保命或让事情变得容易,唐僧不得不假装对一个女巫感兴趣。10 孙悟空从矿物状态进化而来,由一块浸透了天地精华的石头进化而来。11 刘氏,《孟子》,第 167 页。12 这部小说实际上有十六回。详情见下文。13 Frye,《批评剖析》,第 190 页。14 Frye,《身份寓言》,第 59 页。15 关于这种“崇拜”,请参见 Wai-yee Li,《魅惑与祛魅》;Anthony C. Yu,《重读石头记》;Martin Huang,《晚期帝制中国的欲望与虚构叙事》;爱泼斯坦,《竞争话语》;桑坦杰洛,
王戈,IEEE 会员,钱晨,IEEE 会员,上官龙飞,丁涵,IEEE 会员,韩劲松,IEEE 高级会员,崔开燕,IEEE 会员,奚伟*,IEEE 会员,赵继忠,IEEE 会员 摘要 — 无源射频识别 (RFID) 标签已广泛应用于物流、零售和仓储等许多领域。在许多情况下,物体的顺序比它们的绝对位置更重要。然而,最先进的排序方法需要标签和读取器的持续移动,这限制了应用领域和可扩展性。在本文中,我们提出了一种不需要设备移动的无源标签二维排序方法。相反,我们的方法利用标签周围不携带设备的人体任意移动引起的信号变化进行水平维度排序。因此,我们的方法称为基于人体运动的排序 (HMO)。HMO 的基本思想是当人们在读取器天线和标签之间经过时,接收到的信号强度会发生变化。通过观察标签的时间序列 RSS 变化,HMO 可以获取标签在特定水平方向上的顺序。对于垂直维度,我们采用线性规划方法,该方法在实践中可以容忍微小的误差。我们使用现成的商用 RFID 设备实现 HMO。实验结果表明,HMO 在单人和多人情况下分别可以实现高达 88.71% 和 90.86% 的平均准确率。
