化石燃料的消耗量不断增加,导致能源危机和环境问题,严重影响人类的日常生活。迄今为止,人们已经付出了巨大的努力来探索可持续、环保和可再生能源来替代化石燃料。在过去的几十年中,各种能量转换和存储技术,如水分解(Zhang F. et al., 2019; Hu et al., 2021; Wu et al., 2021)、质子交换膜燃料电池(Edwards et al., 2008; Park et al., 2012)、氮还原反应(NRR)(Wan et al., 2019; Zhang W. et al., 2019; Yang et al., 2020b; Li et al., 2021)、CO 2 还原反应(CO 2 RR)(Ozdemir et al., 2019; Liu et al., 2020; Yang et al., 2020a; Ma et al., 2021; Wang et al., 2021)和金属-空气电池(Cheng and Chen, 2012)等,已经取得了长足的进步。纳米材料因其高效、能源安全和环保等特点,已展现出良好的发展前景。在这些领域,制备性能优异的先进材料以及开发先进的预测、表征和检测技术受到了越来越多的关注(Centi,2020)。电催化NRR制NH 3 因其在环境条件下能耗较低而被视为传统Haber-Bosch工艺的一种有吸引力的替代方案(Tang and Qiao,2019;Yang et al.,2020b)。开发性能优异、成本低的先进NRR催化剂是十分必要的。最近,Wang等报道环状V 2 O 3 纳米结构可以在环境条件下有效地将N 2 转化为NH 3 。扫描电子显微镜分析表明,环状结构均匀,外径为350–500nm。透射电子显微镜(TEM)分析证实这种纳米环具有粗糙的表面,显示出更多的活性位点。单个纳米环的高分辨率 TEM 图像显示收缩的晶面间距为 0.211 nm,对应于 (113) 平面。这项工作提出了一种制造用于 NRR 的先进非贵金属催化剂的简便策略。相信未来将开发出更有效、更稳定的电催化剂来促进 NRR。
1. Li, D. 等人。扩展分辨率结构化照明成像的内吞和细胞骨架动力学。91 Science 349 , 944–944 (2015)。92 2. Gustafsson, MGL 使用结构化照明显微镜将横向分辨率极限提高两倍。Journal of Microscopy 198 , 82-87 (2000)。94 3. Gustafsson, MGL 等人。通过结构化照明在宽视场荧光显微镜中实现三维分辨率加倍。Biophysical Journal 94 , 4957-4970 (2008)。96 4. Cragg, GE 和 So, PTC 使用驻波增强横向分辨率。Opt. Lett. 97 25 , 46-48 (2000)。 98 5. Kner, P. 等人。通过结构化照明对活细胞进行超分辨率视频显微镜检查。自然方法 6 , 99 339–342 (2009)。00 6. Hirvonen, LM 等人。活细胞的结构化照明显微镜检查。欧洲生物物理杂志 38 , 807–812 01 (2009)。02 7. Guo, Y. 等人。在毫秒时间尺度上以纳米级分辨率可视化细胞内细胞器和细胞骨架相互作用。Cell 175 , 1430-1442 (2018)。04 8. Huang, X. 等人。使用 Hessian 结构化照明显微镜实现快速、长期、超分辨率成像。自然生物技术 36 , 451–459 (2018)。 06 9. Chu, K. 等人。低信号水平结构照明显微镜的图像重建。Opt. 07 Express 22 , 8687-8702 (2014)。08 10. Wen, G. 等人。通过点扩展函数工程实现高保真结构照明显微镜。09 Light Sci Appl 10 , 70 (2021)。10 11. Jin, L. 等人。深度学习使结构照明显微镜具有低光照水平和更快的速度。Nat Commun 11 , 1934 (2020)。12 12. Qiao, C. 等人。用于光学显微镜图像超分辨率的深度神经网络的评估和开发。Nat Methods 18 , 194–202 (2021)。 14 13. Kobler, E. 等人。线性逆问题的总深度变分。CVPR,7546-7555(2020 年)。15 14. S. Bhadra。等人。断层扫描图像重建中的幻觉。IEEE 医学成像学报 40,3249-3260(2021 年)。17 15. Jakobs, S. 和 Wurm, CA 线粒体的超分辨率显微镜。化学生物学最新观点 20,9-15(2014 年)。19
1 Zhiding Yang A Hybrid Approach for Wave Height Estimation from Rain-Contaminated Radar Images Based on Segmentation and Iterative Dehazing 2 Wanglong Lu TextDoctor: Unified Document Image Inpainting via Patch Pyramid Diffusion Models 3 Sachithra H Atapattu Enhancing the Region of Attraction of a Multi-Rotor UAV Using Neural Network-Based iLQR Control 4 Zahra Jafari A Novel Method for Estimation of Sea-Surface Wind Speed from SAR Imagery 5 Jesse Chen An Evaluation of the Effect of Seasonal Evolution on GNSS Reflectometry Based Sea Ice Classification Using Random Forest Classifiers 6 Manish Patel Optimization-Based Design and Reliability Assessment of a Hybrid Energy System for Natuashish, Labrador 7 Xin Qiao Ocean Surface Wind Speed Estimation From GNSS-R Data Using CNN-Transformer Network 8 Afzal Ahmed A对Windows 11和Ubuntu上媒体玩家功耗的比较分析24.04.1 9 Fatemeh Kafrashi设计以及浮动太阳能的反渗透饮用水系统Kish Island 10 Syed Nafiz Imtiaz设计和Newfoundland Stephenville H2项目的500 MW Winderf Project Syed Nafiz Imtiaz设计和模拟。23 Sondos Omar陡坡 - 修改深神经网络,以减轻消失的梯度问题24 ASAD MEHMOOD HASSAN设计和分析Lahore模型镇房屋的光伏系统的分析,使用Homer Pro。11 Benjamin f Stanley搜索订购星际争霸订单优化的订购12 yi li改进了PCS从X频段雷达数据中从X频段雷达数据中检索的PCS算法13 RUSLAN MASINJILA对象操纵使用多模式,基于触觉的感应和使用Ahsan Mustaf for Aduning大型语言15 Khan khan khan khan khan khan khan khan khan khaan khaan khaan khaan khaan khaan khaan khaan基于ARM的CPU 16 RIDWANULLAH ABDULKAREEM FPGA基于GNSS-R整合的海洋监测的实时信号处理17 Samarasimha Reddy Chittamuru机器基于机器学习的功率预测亨利·拉尔森(Henry Larsen Thilakanayake Generative Adversarial Network Based Synthetic Radar Image Generation Method for Automotive Perception Datasets 20 Nirasha Herath Real-Time Video Super-Resolution Using Generative Adversarial Networks 21 Masoud Torabi Enhanced Radar Cross Section Modeling for Ocean Surface 22 Nnaemeka Nwauzor Dynamic Simulation of Solar Energy System for A Shop in Nigeria Providing Community Cellphone Charging Service.
NOTES: MOE, Ministry of Education; NSFC, National Science Foundation of China; SAFEA, State Administration of Foreign Expert Affairs; CLGCTW, Central Leading Group for the Coordination of Talent Work. (a) The 100 Talents Plan initially included part-time participants, but the CAS changed this policy around 2004. Too many individuals accepted the award, but rarely appeared at the CAS (Hao Xin, 2006). (b) “Two-decade Development of the Hundred Talent Program” (Chinese Academy of Sciences, n.d.) reported that 90 percent of the 2,145 total awardees were from abroad, yielding 1,930 program participants. (c) Liu Bin, Qiao Lili, and Zhang Yi, “An Analysis of the Funding Status and Achievement Impact of National Science Fund for Distinguished Young Scholars in the Life Sciences” (in Chinese), Science Funds in China , No. 2 (2016): 122−131. (d) The Spring Light Program brought more than 300 delegations to China by the end of 2009. These consisted of 15,000 overseas mainlanders who established more than 1,000 projects 赵峰 , 苗丹国 , 魏祖 钰 , 程希 (Zhao Feng, Miao Danguo, Wei Zuyu, Cheng Xi), eds., 留学大事概 览 , 1949–2009 (An Overview of Overseas Study, 1949–2009). 北京: 现代出版社 , 2010, 86. From 2006 to 2018, the Chunhui Award ( 春 晖杯 ) had shortlisted 2,528 projects, of which 448 (17 percent) relocated to China. By 2023, 3,424 “excellent” projects had been selected. See Andrew Spear, “Serve the Motherland while working overseas,” in William C. Hannas and Didi Kirsten Tatlow, eds., China's Quest for Foreign Technology: Beyond Espionage (London: Routledge, 2021 ) 30-31. (e) SAFEA was closed in 2018 and reconstituted under the MOST. See 2017 Budget of the Former State Administration of Foreign Experts Affairs , CSET, Washington, DC, https://cset.georgetown.edu/publication/2017-budget-of-the-former-state-administration-of-foreign-experts- affairs/. (f) The names of the 111 Program project bases are posted at https://opportunities- insight.britishcouncil.org/news/market-news/introduction-china%E2%80%99s-%E2%80%9C111- project%E2%80%9D-0 (British Council, 2017). (g) There were 4,128 TTP awardees at the end of 2014, with an additional 1,028 participants joining TTP in 2015. China's TTP has attracted 5,206 high-end oversea talents' [Zhongguo “qianrenjihua” yinjin 5206 ming haiwai gaocengci rencai], accessed March 10, 2020, http://www.gqb.gov.cn/news/2016/0107/37723.shtml. The Chinese media estimated 8,000 total TTP awardees in 2018. “Shengdu jiedu: guojia ‘qianrenjihua' rencai xiangmu shenbao” [‘In-depth interpretation: 2018 national TTP application'], accessed October 2, 2019,
头颈癌是全球常见的恶性肿瘤。它涵盖了口腔,鼻腔,咽,喉和颈部的一系列肿瘤(Tumban,2019)。该疾病最常见的亚型是鳞状细胞癌,而其他类型(例如腺癌和小细胞癌)也包括在内(Jumaniyazova等,2022)。药物辅助疗法(例如化学疗法和免疫疗法)在治疗头颈癌,改善手术结局并降低复发风险中起着关键作用。(Harrington等,2023; Liu等,2024a)。但是,治疗期间的耐药性限制了长期效率。特别是,耐药性是由细胞信号通路的复杂变化驱动的(Jha等,2023; Trocchianesi等,2023)以及肿瘤微环境(Biswal等,2023; Qiao et al。,2023; Zhang et al。,20223)。因此,对耐药性分子基础的深入了解和研究对于发展更有效的治疗策略至关重要。未来的研究应探讨新药物组合,有针对性的疗法和个性化的抗药性预防策略。这可能会使他们能够克服头颈癌治疗中的耐药性挑战。随着技术的进步,头颈癌的治疗已有一系列新药物治疗选择,包括一些高级新药。通过激活免疫系统并增强人体的抗肿瘤防御反应,这些药物在某些患者中表现出极好的效率。首先,抗PD-1/PD-1/PD-L1免疫检查点抑制剂,例如Nivolumab(Marco等,2022)和Pembrolizumab(Yuan等,2023),在近年来在头部和颈部癌症治疗中取得了出色的进步(Bommireddy等人,2020年,2020年; Marun和Mardal,20221年)。但是,不同的个体具有不同的免疫状态,从而导致这些药物的治疗作用可变。其次,靶向治疗也已成为头颈癌治疗的主要方向(Stabile等,2013)。例如,表皮生长因子受体(EGFR)抑制剂,例如西妥昔单抗,通过干扰EGFR信号传导途径抑制肿瘤细胞的生长和分裂(Ratushny等,2009)。尽管这些药物在某些患者中表现出很高的效率,但它们在长期治疗中易受耐药性,限制了其临床应用(Cserepes等,2022; Chan等,2023; Doghish等,2023)。最后,某些草药成分,例如scutellaria baicalensis中的黄酸酯具有抗肿瘤活性(Tang and Dong,2023年)。它通过抑制癌细胞增殖并促进凋亡具有对药物耐药性头颈癌的潜在效率(Guo等,2019; Gao等,2020)。此外,阿丁雷蛋白(Li,2021)及其衍生物在中医中是互补的(Roh等,2017)。研究表明,它们可以通过多种途径调节肿瘤细胞信号传导,并抑制头颈癌的耐药性。一般而言,头颈癌用多种药物治疗,包括免疫检查点抑制剂,靶向疗法和草药治疗。然而,由于长期使用而导致的个体免疫状况和耐药性差异是不稳定治疗作用的主要挑战。因此,对头颈癌中耐药性机制的深入研究对于
心血管疾病是全球死亡的最常见原因。冠心病(CHD)是最常见的心血管疾病类型。它的特征是由于冠状动脉变窄而导致心肌功能障碍,导致血液供应不足。CHD是全球老年患者的死亡原因之一,其风险持续上升。在小鼠模型中,可以通过肠道微生物(GM)转移传播对CHD和血栓形成的敏感性(Brown and Hazen,2018)。这种传播可能与以下事实有关:微生物群落影响宿主代谢,并通过微生物相关的分子模式通过宿主模式识别受体感知,这会影响心血管疾病的发病机理。针对微生物的治疗策略有望预防或治疗心血管疾病(Brown and Hazen,2018)。正常个体和冠状动脉疾病患者之间的GM组成中存在显着差异。在健康的人中,肠道菌群主要包括坚硬,细菌植物,肌动杆菌和子宫菌,它们在维持肠道健康和免疫系统方面起着关键作用。相比之下,冠心病患者的肠道成分和结构发生了显着变化。这些变化包括某些细菌组的增加或减少,例如毛霉菌蛋白酶科和Ruminococaccaceae,以及病原体或机会性病原体的数量增加(Dai等人,2020年)。迄今报道的潜在生物标志物包括三甲胺氧化胺(TMAO),短链脂肪酸(SCFA)和次胆汁酸。例如,tmao是一种肠道的代谢产物,与动脉粥样硬化的形成密切相关和CHD的发展。研究表明,TMAO通过影响血小板活性和胆固醇代谢来促进动脉粥样硬化的形成(Tang and Hazen,2017; Witkowski等,2020)。先前的研究表明,GM与CHD之间存在很强的因果关系(Jiang等,2023; Yang等,2024),GM和代谢物的丰度变化可能会影响CHD的进展(Wang等,2024)。大量证据表明,转基因在诸如代谢性疾病和心血管疾病等疾病的发作和进展中起着至关重要的作用(Wen等,2022; Qiao等,2023)。临床研究发现,CHD和认知障碍患者的GM发生了显着变化(Sun等,2019; Paiva等,2020)。GM的变化可以通过诸如慢性炎症,促进动脉粥样硬化和促进血栓形成的机制来介导CHD的发展(Liyu等,2022)。一项研究从转录组的角度分析了GM和CHD之间的关系,发现fusicatenibacter可以通过影响几个与CHD相关的靶标,即GBP2,MLKL和CPR65高度相关(Chen等,2023)。另一项研究表明,与CHD相关的肠道菌群中的性别营养不良,有可能导致心血管疾病发生率中观察到的性别差异(Garcia-Fernandez等,2024)。许多草药也可以通过调节GM的组成,降低三甲胺-N-氧化物(TMAO)水平来对CHD进行干预,从而增加
因此,识别信息性生物标志物仍然是一个重大挑战。自过去十年以来,作为各种重要生物学过程的调节剂,表观遗传机制变得广泛突出,而这些过程的核心是微核酸(miRNAS)(Mirnas)(Filipowicz等,2008)。miRNA属于小型非编码RNA类,该类别通过靶mRNA降解或翻译抑制在转录后调节基因表达(Pu等,2019)。miRNA:mRNA双链形成需要两个序列中八个核苷酸种子区域之间的互补性。双链体针对多核糖体进行调节,以调节mRNA翻译过程,或者针对储存/降解的P体型(Filipowicz等,2008)。miRNA可以控制近60%的蛋白质编码基因的表达,因此,这些被认为是各种疾病早期诊断的重要生物标志物。它们作为有效生物标志物的潜力可以从独特的分泌特性中得出,因为它们在没有细胞对细胞接触的各种细胞类型中调节多个基因的表达(Schwarzenbach等,2014)。除了它们在组织中的存在外,miRNA还分泌在细胞外流体,血浆和唾液中,因此可以作为疾病诊断的潜在无侵入性标记物(François等,2019)。关于miRNA参与人类疾病的初步证据起源于癌症研究。miR-153与各种疾病有关,例如高血压,骨肉瘤,胶质母细胞瘤和其他各种癌症。各种表达的促进研究表明,与对照相比,癌症样品中不同miRNA的表达异常(Calin等,2002)。在AD中始终发现受管制的miRNA包括: miR-9,miR-29,miR-34,miR-107,mir-181,mir-186,mir-146a,mir-155和mir-153(Femmminella et al。,2015)。miR-153通过kCNQ4的下调有助于高血压状态(Carr等,2016)。miR-153表达的增加升高了神经发生和改善的认知(Qiao等,2020)。此外,与年龄匹配的对照样本相比,在早期,中,中度和严重的AD病例中还观察到了miR-153的表达水平的显着降低。此外,在miR-153和β斑块负担之间观察到了反相关性,使其成为潜在的疾病生物标志物和新型药物靶标(Long等,2012)。miR-153-3p的异位表达通过增加IL-1β,TNF-α和IL-6的释放,并通过调节GPR55表达来降低神经干细胞分化,从而诱导了炎症(Dong等,2023)。增加了miR-153在海马中破坏突触1的表达,并受损的谷氨酸能囊泡转运受损,从而导致大鼠慢性脑灌注不足(Zhang等,2020)。由于miR-153在包括AD在内的神经元疾病中的重要作用,至关重要的是要确定与该miRNA相同的分子靶标,以阐明导致疾病表型的基本机制。由于miRNA在与疾病相关的过程中的重要性需要改善miRNA目标预测的速度。由于当前的实验程序的局限性,有关miRNA的调节和治疗作用的数据很少(Jaberi等,2024)。可用于揭示具有相对灵敏度和特异性的大部分miRNA的分子靶标的分子靶标的
2。Giannella M,Bartoletti M,Campoli C等。 产生碳青霉酶的肠杆菌科定殖对肝移植后感染风险的影响:一项前瞻性观察群研究。 临床微生物感染。 2019; 25(12):1525-1531。 3。 Qiao B,Wu J,Wan Q,Zhang S,Ye Q. 因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。 BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。Giannella M,Bartoletti M,Campoli C等。产生碳青霉酶的肠杆菌科定殖对肝移植后感染风险的影响:一项前瞻性观察群研究。临床微生物感染。2019; 25(12):1525-1531。 3。 Qiao B,Wu J,Wan Q,Zhang S,Ye Q. 因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。 BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2019; 25(12):1525-1531。3。Qiao B,Wu J,Wan Q,Zhang S,Ye Q.因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。BMC感染。2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2017; 17(1):171。4。Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。Giannella M,Freire M,Rinaldi M等。开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。临床感染。2021; 73(4):E955-E966。5。Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。临床微生物感染。2021; 27(6):915.e1-915.e3。6。Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。int j抗小动物剂。2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2019; 54(4):442-448。7。Jorgensen SCJ,Trinh TD,Zasowski EJ等。感染了。2020; 9(2):291-304。8。Am J移植。2020; 20(6):1629-1641。评估用头孢济胺 - 阿维巴丹治疗的耐碳青霉烯肠杆菌感染患者的增量CPE,PITT菌血症和QPITT评分。Pérez-Nadales E,Gutiérrez-GutiérrezB,Natera AM等。固体器官移植受者死亡率的鉴定因产生碳纤维酶的肠杆菌引起的血流感染:巨细胞病毒疾病和淋巴细胞减少症的影响。9。Harrispa,Taylorr,Thielker,Paynej,Gonzalezn,Condejg.1rearch电子数据捕获(REDCAP) - 元数据驱动的方法和工作流程,用于提供翻译研究信息学支持。j BioMed Inform。2009; 42(2):377-381。 10。 Harris PA,Taylor R,Minor BL等。 REDCAP联盟:建立一个软件平台合作伙伴的国际社会。 j BioMed Inform。 2019; 95:103208。 11。 Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2009; 42(2):377-381。10。Harris PA,Taylor R,Minor BL等。 REDCAP联盟:建立一个软件平台合作伙伴的国际社会。 j BioMed Inform。 2019; 95:103208。 11。 Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。Harris PA,Taylor R,Minor BL等。REDCAP联盟:建立一个软件平台合作伙伴的国际社会。j BioMed Inform。2019; 95:103208。11。Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。Horan TC,Andrus M,Dudeck MA。CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。AM J感染控制。2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2008; 36(5):309-332。12。al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。在基于人群的队列中对血液感染死亡率评分评分的外部验证。临床微生物感染。2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2014; 20(9):886-891。13。Paterson DL,Ko WC,Von Gottberg A等。肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。Ann Intern Med。Ann Intern Med。2004; 140(1):26-32。 14。 Jones AE,Trzeciak S,Kline JA。 在急诊科呈递时预测严重败血症患者和灌注不良的证据的顺序器官衰竭评估评估评分。 Crit Care Med。 2009; 37(5):1649-1654。 15。 战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2004; 140(1):26-32。14。Jones AE,Trzeciak S,Kline JA。在急诊科呈递时预测严重败血症患者和灌注不良的证据的顺序器官衰竭评估评估评分。Crit Care Med。2009; 37(5):1649-1654。 15。 战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2009; 37(5):1649-1654。15。战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。战斗SE,Augustine MR,Watson CM等。快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。感染。2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2019; 47(4):571-578。16。Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。Khwaja A. Kdigo急性肾脏损伤临床实践指南。nephron Clin实践。2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2012; 120(4):C179-C184。17。Girmenia C,Lazzarotto T,Bonifazi F等。在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。临床移植。2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2019; 33(10):E13666。18。Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。BIOM j。 2005; 47(4):458-472。BIOM j。2005; 47(4):458-472。2005; 47(4):458-472。
* Paul Gilbert和Riccardo Tremolada是Cleary Gottlieb Steen&Hamilton LLP的律师。本文中表达的观点是个人的,不归因于公司或其客户。所有错误,遗漏和观点都是作者自己的。1 See Regulation 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations 300/2008, 167/2013, 168/2013, 2018/858, 2018/1139 and 2019/2144 and Directives 2014/90/EU, 2016/797 and 2020/1828 (人工智能法),PE/24/2024/REV/1 OJ L,2024/1689,2024年7月12日,Refitals 99和105。2,例如,AI改善了财务预测和股票市场的预测。 它还为语音识别,流媒体平台上的建议系统提供动力,智能停车系统和个性化的购物建议。 3 FMS是深度学习模型,经过对非结构化的,未标记的数据训练,可用于开箱即用的多种任务或通过微调适应特定任务。 参见P. Lorenz,K。Perset和J. Berryhill,“生成人工智能的初步政策注意事项” 2023 OECD Publishing,No. 1,经合组织人工智能论文,巴黎第6页。 4根据Openai当时的Openai首席执行官Greg Brockman的说法。 5 T. Oeyen和Y. Yargici,“未知领域:生成AI,合并控制和Microsoft-Open AI Saga”,档案,人工智能和反果实,同意2-2024,第18页。 6参见,例如,E。Mollick,“ Chatgpt是AI的转折点”,《哈佛商业评论》(2022年12月14日)。2,例如,AI改善了财务预测和股票市场的预测。它还为语音识别,流媒体平台上的建议系统提供动力,智能停车系统和个性化的购物建议。3 FMS是深度学习模型,经过对非结构化的,未标记的数据训练,可用于开箱即用的多种任务或通过微调适应特定任务。参见P. Lorenz,K。Perset和J. Berryhill,“生成人工智能的初步政策注意事项” 2023 OECD Publishing,No.1,经合组织人工智能论文,巴黎第6页。4根据Openai当时的Openai首席执行官Greg Brockman的说法。5 T. Oeyen和Y. Yargici,“未知领域:生成AI,合并控制和Microsoft-Open AI Saga”,档案,人工智能和反果实,同意2-2024,第18页。6参见,例如,E。Mollick,“ Chatgpt是AI的转折点”,《哈佛商业评论》(2022年12月14日)。7公司活跃在Genai领域中,例如,例如Aleph Alpha,Bloom(拥抱面),Claude(Anthropic),Cohere,Gemini和Gemma和Gemma(Google),拐点AI,Llama(Meta),各种版本的Mistral AI,Midjourney,Midjourney,sentability AI和Titan(titan)和Titan(Amazon)。8 See M. Heikkilä, “AI is at an inflection point, Fei-Fei Li says”, MIT Technology Review , 14 November 2023, available at: https://www.technologyreview.com/2023/11/14 /1083352/ai-is-at-an-inflection-point-fei-fei-li-says/ .9 Polaris, “Generative AI Market Share, Size, Trends, Industry Analysis Report, By Component (Software and Services); By Technology; By End-Use; By Region; Segment Forecast, 2023—2032”, 2023, available at: https://www.polarismarketresearch.com/industry-analysis/generativeai-market .10实际上,经济的每个部门都将从Genai中受益。Genai已经在整个经济体中许多部门都在改变商业实践和生产力。它在科学研究中也越来越有价值,从而实现了扩展科学家能力的复杂模型。参见,例如,Z.另请参见J. Seo等人,“避免使用深度增强学习的融合等离子体撕裂的不稳定性”,626自然,746-751(2024)。高盛在2023年进行的研究估计,Genai工具有可能在未来10年内向GDP增加7%,这相当于大约7万亿美元。11参见McKinsey,“生成AI的经济潜力:下一个生产力边界”,2023年,第24页,可在以下网址获得:https://www.mckinsey.com/~/~/~/mmedia/mckinsey/mckinsey/business %20functions/mckinsey%20digital/our%20insights/the%20economic%20potential%20of%20generative%20ai%20the%20next%20productivity%20frontier/the-economic -potential-of-generative-ai-the-next-productivity-frontier.pdf .参见高盛(Goldman Sachs),“生成AI可以将全球GDP提高7%”,2023年4月5日,网址为:https://www.goldmansachs.com/insights/Articles/generative-generative-generative-could-could-raise-glaise-global-global-global-gdp-by-7-percent.html。12 Genai行业应被理解为“ Genai模型的价值链”,其中可能包括以下市场:筹码制造,云基础设施的提供,数据许可,特定类型的AI劳动力的供应,生产力的供应,生产力的供应,供应特定的CHATBOT服务,特定手机助理服务的供应,供应特定的手机数字助理服务等。请参阅欧洲委员会,“生成AI和虚拟世界中的竞争”,竞争政策简介第3/2024号,网址:https://competition-policy.ec.europa.europa.euu/document/document/download/c86d461f-062e--062e--062e--4dde-4dde-4dde-a662-1522222222856ca。13虽然竞争执法在维护竞争性的Genai市场中的作用很重要,但应注意的是,与这些技术有关的市场动态和竞争的发展方式很容易受到许多其他因素的影响,包括对与竞争不同的政策方面的监管,例如AI安全,数据和版权法。请参阅欧洲委员会,“生成AI和虚拟世界中的竞争”,竞争政策简介第3/2024号,网址:https://competition-policy.ec.europa.europa.euu/document/document/download/c86d461f-062e--062e--062e--4dde-4dde-4dde-a662-1522222222856ca。
[5] L. Zhang 等人,“内燃机可变压缩比技术的最新进展”,SAE 技术论文 2019-01-0239,2019 年。[6] J. Wang 等人,“均质压燃 (HCCI) 燃烧:挑战与机遇”,燃烧与火焰,第 200 卷,第 1-27 页,2019 年。[7] K. Smith 等人,“汽油直喷:当前技术和未来发展的回顾”,国际发动机研究杂志,第 20 卷,第 4 期,第 441-455 页,2019 年。[8] A. Brown 等人,“轻度混合动力电动汽车:综合评论”,IEEE Access,第 20 卷,第 4 期,第 441-455 页,2019 年。 7,第 29328-29344 页,2019 年。[9] B. Chen 等人,“全混合动力系统:设计、控制和能源管理策略”,Energies,第 12 卷,第 14 期,第 2683 页,2019 年。[10] C. Davis 等人,“插电式混合动力汽车:近期发展和未来展望回顾”,IEEE Transactions on Transportation Electrification,第 6 卷,第 3 期,第 858-872 页,2020 年。[11] X. Li 等人,“燃料电池电动汽车:进展、挑战和未来展望”,Journal of Power Sources,第 20 卷,第 3 期,第 858-872 页,2020 年。 382,第 176-196 页,2018 年。[12] Y. Wang 等人,“电池电动汽车的进步:挑战与机遇回顾”,可再生和可持续能源评论,第 74 卷,第 1151-1164 页,2017 年。[13] Z. Zhang 等人,“固态电池:挑战与前景”,先进能源材料,第 8 卷,第 19 期,2018 年。[14] Guezennec Y、Musardo C、Staccia B、Midlam Mohler S、Calo E、PisuP。带有混合模式 HCCI/DI 发动机的 HEV 的 NOx 减排监控。SAE 技术论文;2004-05-0123; [15] Midlam- Mohler S, Haas S ,Guezennec Y, Bargende M, Rizzoni G. 带外部混合气制备的混合模式柴油 HCCI/DI. SAE 技术论文 2004;2004-05-0446;2004。侯建雄,乔晓倩。利用小波包变换对 HCCI DME 发动机爆震燃烧特性进行表征。应用能源 2010;87:1239-46。 [16] JOO ss P Tu est d J h ss “HCCI 发动机配备三元催化转化器详细排放形态的实验研究”,SAE P per 2001-01-1031,2001 年。 [17] DS Kim d CS Lee “通过可变预混合燃料和 EGR 改善 HCCI 发动机的排放特性”,Fue v 85 5-6,第 695-704 页,2006 年。 [18] Jacek Hunicz、Alejandro Medina,对配备三元催化转化器的 HCCI 发动机详细排放形态的实验研究,Energy 117(2016 年)388-397。 [19] M Christese A Hu tqvist d J h ss “Dem str ti g the multi fuel capacity of ahm ge e us ch rge c mpressi ig iti e with v ri bec mpressi ir ti ” SAE P per1999- 01- 3679, 1999. [20] M Christese J h ss d P Ei ew “HCCI using isoctane, ethanol and natural gas—c mp ris with sp rk ig iti per ti ” SAE P per 972874, 1997. [21] K. Hiraya, K. Hasegawa, T. Urushihara, A. Iiyama, and T. Itoh,汽油燃料压燃发动机的研究——工作区域扩展试验。SAE 论文 2002-01-0416,2002 年。[22] N Iid d T Ig r shi,“内燃机中正丁烷和 DME/空气混合物的自燃和燃烧” SAE 论文 2000-01-1832,2000 年。JOOlsson、P. Tunestal、BJ Johansson、S Five d R Ag md M Wi i“HCCI 中压燃发动机的最优燃烧条件” SAE 论文 2002-01-0111,2002 年。[23] SR Ganesan,内燃机,第 4 版。印度新德里:Tata McGraw-Hill Education,2013 年。[24] R.Stone,《内燃机简介》,第 4 版。纽约州纽约:Palgrave Macmillan,2012 年。[25] JB Heywood,《内燃机基础》,第 2 版。纽约州纽约:McGraw-Hill,1988 年。[26] AK Agarwal,《汽油发动机管理:系统和部件》,第 1 版。纽约州纽约:Springer,2005 年。[27] RD Braun,《内燃机轴承和流体动力轴承的润滑》,第 1 版。纽约州纽约:Springer,2010 年。