1. 档案数据。2. 技术说明 THM61141。SPI®NEVO、SPI®ELEMENT 和 SPI®CONTACT 种植体 PF 3.5-6.0 的手术程序 3. Cha JY 等人 J Dent Res。2015;94:482-90;4. Aldahlawi S 等人 Clin Cosmet Investig Dent。2018;10:203-9;5. Ikar M 等人 Quintessence Int。2020;51:142-150;6. Duyck J 等人 Clin Oral Implants Res。2015;26:191-6;7. Berglundh T 等人 Clin Oral Implants Res。2003;14:251-62; 8. Mohammadi Z, Dummer PM。Int Endod J。2011;44:697-730。;9. Madigan MM 等人。Brock Biology of Microorganisms。第 16 版:Pearson;2020;10. Tilbury 等人。Hydrometallurgy 2017;170:82-9;11. Tan J 等人。ACS Appl Mater Interfaces。2018;10:42018-29;12. Galow AM 等人。Biochem Biophys Rep。2017;10:17-25;13. Kruse CR 等人。Wound Repair Regen。2017;25:260-69;14. Wang S 等人。Bioact Mater。2021;15:316-29; 15. Burkhardt MA 等人。科学报告2016;6:21071; 16. Burkhardt MA 等人。生物材料科学。 2017;5:2009-23; 17. Hicklin SP 等人,Int J Oral Maxillofac Implants。 2020; 35:1013-20; 18. Le Gac O、Grunder U、Dent.J。 2015;3:15–23; 19. Makowiecki A 等人,BMC 口腔健康。 2019;19:79; 20. Lin G 等人,《临床牙周病杂志》。 2018;45:733–43; 21. Camarda AJ 等人,临床口腔种植研究。 2021;32:285-296; 22. Hermann JS 等人,临床口腔种植研究。 2001;12:559-71; 23. 杰普森 S 等人。 J 临床牙周病杂志。 2015;42:S152-7; 24. Derks J 等人,J Dent Res。 2015;94:44s-51s; 25. Merli M 等人,《临床牙周病杂志》。 2020;47:621–9; 26. Jaquiéry C 等人,Dent。 J.2014; 2:106-17; 27. Hinkle RM 等人,J Oral Maxillofac Surg。 2014年; 72:1495–502; 28. Pedro Molinero-Mourelle 等人,Clin Implant Dent Relat Res. 2024;在线版先行出版;29. Lee JH 等人,Clin Oral Implants Res. 2014;25:e83-9;30. Flanagan D 等人,J Oral Implantol. 2015;41:37-44;31. Sasada Y、Cochran DL,Int J Oral Maxillofac Implants. 2017;32:1296-307;32. Shin HM 等人,J Adv Prosthodont. 2014;6:126-32;33. Yu H、Qiu L,Int. J. Oral Maxillo-fac. Surg. 2022;51:1355-61; 34. Karasan D 等人。临床口腔种植学研究。2023 年;先在线后印刷。
Tommaso Jucker 1 | FabianJörgFischer1 | JérômeChave2.3 | David A. Coomes 4 |约翰·卡斯珀森(John Caspersen)5 | Arshad Ali 6 | Grace Jopaul Loubota Panzou 7.8 | Ted R. Feldpousch 9 |丹尼尔·福特(Daniel Falster)10 | Vladimir A. Usoltsev 11,12 | Stephen Adu-Bredu 13 | Luciana F. Alves 14 | Mohammad Aminpour 15 | Ilondoa B. Angoboy 16 | Niels P. R.天线17 | CécileAntin 18 | Yousef Askari 19 | RodrigoMuñoz20,21 | Narayanan Ayyappan 22 | Patricia Balvanera 23 | Lindsay Banin 24 | Nicolas Barbier 18 | John J.
1.Cascella M、Rajnik M、Aleem A、Dulebohn SC、Di Napoli R. 冠状病毒 (COVID ‐ 19) 的特征、评估和治疗。StatPearls Publishing 版权所有 ©;2022。2.Wiersinga WJ、Rhodes A、Cheng AC、Peacock SJ、Prescott HC。2019 年冠状病毒病 (COVID ‐ 19) 的病理生理学、传播、诊断和治疗:综述。JAMA。2020;324(8):782 ‐ 793。3.世界卫生组织。世卫组织冠状病毒 (COVID ‐ 19) 仪表板。https://covid19.who.int/ 4.世界卫生组织。COVID ‐ 19 继续扰乱 90% 国家的基本卫生服务。https://www.who。int/news/item/23-04-2021-covid-19-continues-to-disrupt- essential-health-services-in-90-of-countries 5。Naseem M、Akhund R、Arshad H、Ibrahim MT。探索人工智能和机器学习对抗 COVID ‐ 19 的潜力以及中低收入国家的现有机会:范围审查。J Prim Care Commun Health .2020;11:2150132720963634.6.Miller DD, Brown EW.医疗实践中的人工智能:从问题到答案?Am J Med .2018;131(2):129 - 133.7.Fang C, Bai S, Chen Q, et al.深度学习用于预测 COVID - 19 恶性进展。Med Image Anal .2021;72:102096.8.Lan L, Sun W, Xu D, 等。基于人工智能的 COVID ‐ 19 患者管理方法。Intel Med 。2021;1(1):10 ‐ 15。9.Harnad S. 根据同行排名验证研究绩效指标。伦理科学环境政治。2008;8(1):103 ‐ 107。10.Garfield E. 引文分析作为期刊评估工具:可以根据科学政策研究的引文频率和影响力对期刊进行排名。科学。1972;178(4060):471 - 479。11.Van Noorden R. 指标:多种测量方法。Nature .2010;465(7300):864 - 866。12.Bornmann L, Marx W. 文献计量学中标准化引文影响分数的生成方法:哪种方法最能反映专家的判断?J Inform .2015;9(2):408 ‐ 418.13.Praveen G、Chaithanya R、Alla RK、Shammas M、Abdurahiman VT、Anitha A.J 假肢凹痕。2020;123(5):724 ‐ 730.14.15.1951 年至 2019 年期间发表文章的文献计量分析:口腔修复学期刊中被引用次数最多的 100 篇文章。Li M, Cai Q, Ma J ‐ W, Zhang L, Henschke CI。肺癌筛查中被引用次数最多的 100 篇文章:文献计量分析。Ann Transl Med。2021;9(9):787。Gao Q,Zhang C,Wang J,等。1990 年至 2019 年骨质疏松症被引用次数最多的 100 篇文章:文献计量和可视化分析。骨质疏松症档案。2020;15(1):1 ‐ 11.16.Lai P, Liu Y, Xue J, He P, Qiu Y.主动脉夹层被引用次数最多的 100 篇文章。BMC Cardiovasc Disord .2017;17(1):30.17.Walsh C, Lydon S, Byrne D, Madden C, Fox S, O'Connor P. 医疗模拟被引用次数最多的 100 篇文章:文献计量综述。Simul Healthc J Soc Simul Healthc .2018;13(3):211 - 220。18.AlRyalat SAS、Malkawi LW、Momani SM。使用 PubMed、Scopus 和 Web of Science 数据库比较文献计量分析。J Visual Exp。2019;(152):e58494。19.Ozturk T、Talo M、Yildirim EA、Baloglu UB、Yildirim O、Rajendra Acharya U。自动检测 COVID - 19 病例
1.Patil G 、Patel R、Jaat R、Pattanayak A、Jain P、Srinivasan R. (2009) 谷氨酰胺改善鹰嘴豆 (Cicer arietinum L.) 芽形态发生 Acta Physiologiae Plantarum 。1;31(5):1077-84。2.Patil G 、Deokar A、Jain PK、Thengane RJ 和 Srinivasan R (2009) 开发基于磷酸甘露糖异构酶的农杆菌介导鹰嘴豆 (Cicer arietinum L.) 转化系统 Plant Cell Reports , 28 (11), pp.1669-1676。3.Patil G, Nicander B (2013) 在小立碗藓中鉴定出 tRNA 异戊烯基转移酶家族的另外两个成员。植物分子生物学。1;82(4- 5):417-26。4.Deshmukh R, Sonah H, Patil G , Chen W, Prince S, Mutava R, Vuong T, Valliyodan B 和 Nguyen HT (2014) 整合组学方法,提高大豆对非生物胁迫的耐受性。植物科学前沿,5,第 244 页。5.Patil G、Valliyodan B、Deshmukh R、Prince S、Nicander B、Zhao M、Sonah H、Song L、Lin L、Chaudhary J、Liu Y、Nguyen H (2015) 大豆 (Glycine max) SWEET 基因家族:通过比较基因组学、转录组分析和全基因组重测序分析获得的见解。BMC Genomics,16 (1),第 520 页。6.Chen W, He S, Liu D, Patil GB , Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B 和 Nguyen HT (2015) 甘薯香叶基香叶基焦磷酸合酶基因 IbGGPS 可增加拟南芥的类胡萝卜素含量并增强其渗透胁迫耐受性。PLoS One , 10 (9) 7.Prince SJ, Joshi T, Mutava RN, Syed N, Vitor, M, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Nguyen H (2015) 大豆品系抗旱转录组的比较分析,以对比冠层萎蔫。植物科学,240,第 65-78 页。8.Chaudhary、Patil GB、Sonah H、Deshmukh RK、Vuong TD、Valliyodan B 和 Nguyen HT (2015) 扩大组学资源以改善大豆种子组成性状。植物科学前沿,6,第 1021 页。9.Syed N、Prince S、Mutava R、Patil G*、Li S、Chen W、Babu V、Joshi T、Khan S 和 Nguyen H,(2015) 核心时钟、SUB1 和 ABAR 基因通过大豆中的可变剪接介导洪水和干旱反应。《实验植物学杂志》,66 (22),第 7129-7149 页。10.Prince SJ、Song L、Qiu D、dos Santos J、Chai C、Joshi T、Patil G、Valliyodan B、Vuong TD、Murphy M 和 Krampis K (2015) 大豆种质中根结构相关基因的遗传变异,是改良栽培大豆的潜在资源。11.12.BMC 基因组学,16 (1),第 132 页。Sonah H、Chavan S、Katara J、Chaudhary J、Kadam S、Patil G 和 Deshmukh R (2016) 谷物中木聚糖酶抑制蛋白 (XIP) 基因的全基因组鉴定和表征。Indian J. Genet。Plant Breed,76,第 159-166 页。Asekova S、Kulkarni K、Patil G、Kim M、Song J、Nguyen HT、Shannon J 和 Lee J (2016) 野生 (G. soja) 和栽培 (G. max) 大豆杂交种芽鲜重的遗传分析。Molecular Breeding,36 (7),第 103 页。13.Song L, Nguyen N, Deshmukh R, Patil GB , Prince S, Valliyodan B, Mutava R, Pike S, Gassmann W 和 Nguyen H, (2016) 大豆 TIP 基因家族分析和
根据FDA批准的Herceptin Luo,L.,Zhang,Z.,Qiu,N.,Ling,L.&Zheng,G。2021。“对赫赛汀的抵抗是成功治疗HER2阳性乳腺癌的重大挑战。在这里,我们表明,在赫斯汀敏感的细胞中,FOXO3A调节特定的miRNA以控制IGF2和IRS1表达,从而保留基本的IGF2/IGF2/IGF-1R/IRS1信号传导。基本活性维持PPP3CB(丝氨酸/苏氨酸 - 蛋白磷酸酶2b的亚基)的表达,以限制FOXO3A磷酸化(P-FoxO3A),诱导IGF2-和IRS1靶向miRNA。然而,在抗素耐药细胞中,由于PPP3CB的转录抑制,P-FoxO3A水平升高,破坏了FoxO3A和miRNA形成的负反馈抑制环,从而颠覆IGF2和IRS1。此外,我们在乳腺癌患者的血液和IRS1中检测到的IGF2显着增加,对含赫斯汀的治疗方案反应不佳。共同证明了IGF2/IGF-1R/IRS1信号通过破坏FOXO3A-MIRNA负反馈抑制而异常激活在赫赛尔抗素耐药的乳腺癌中。2020。背景:患有人表皮生长因子受体2(HER2)阳性转移性乳腺癌的患者在治疗多种HER2靶向药物后患有疾病进展的治疗方法有限。tucatinib是HER2酪氨酸激酶的研究,口服,高度选择性的抑制剂。这种见解提供了识别预测性生物标志物和有效策略克服赫斯汀抵抗力量的途径。” Murthy,R.K.,Loi,S.,Okines,A.,Paplomata,E.,Hamilton,E.,Hurvitz,S.A. Duhoux,F.P.,Greil,R.,Cameron,D.,Carey,L.A.,Curigliano,G.,Gelmon,K.,Hortobagyi,G.,Krop,I.,Loibl,I.方法:我们随机分配了HER2阳性转移性乳腺癌的患者,先前用曲妥珠单抗,pertuzumab和曲妥珠单抗Emtansine治疗,患有或没有脑转移的曲妥珠单抗Emtansine,可以与Tucatinib或安慰剂一起接受Tucatinib或安慰剂。主要终点是接受随机分组的前480名患者中无进展生存。次要终点,在总人群中评估(612名患者),包括总生存期,患有脑转移患者的无进展生存期,确认的客观反应率和安全性。结果:Tucatinib组合组的1年无进展生存率为33.1%,安慰剂组合组为12.3%(疾病进展或死亡的危害比率为0.54; 95%置信区间[CI],0.42至0.42至0.71; p <0.001; P <0.001; P <0.001),以及中位数的前进持续时间为5个月7.8个月4.8个月。4.8个月4.8个月。4.8个月。4.8个月。4.8个月4.8个月1.8个月。2。1.8个月4.8个月1.8个月。tucatinib组的常见不良事件包括腹泻,掌plant骨 - 底型红细胞心理综合征,恶心,疲劳和呕吐。在Tucatinib-联合组中,2年的总生存率为44.9%,安慰剂组合组为26.6%(死亡的危险比为0.66; 95%CI,0.50至0.88; P = 0.005),中间的总生存率分别为21.9个月和17.4个月。在脑转移患者中,图卡替尼 - 组合组为1年的无进展生存率为24.9%,安慰剂组合组为0%(危险比率为0.48; 95%CI,0.34至0.69; p <0.001; p <0.001),中间的无进度生存期为7.6个月和5.4个月和5.4个月和5.4个月。腹泻和3级或更高级别的氨基转移酶水平升高在Tucatinib组合组中比安慰剂组合组更为常见。结论:在经过大量预处理的HER2阳性转移性乳腺癌的患者中,包括患有脑转移的患者,将tucatinib添加到曲妥珠单抗和卡皮替滨,可更好地
5 TS Böscke、J Müller、D Bräuhaus、U Schröder 和 U Böttger,《应用物理快报》99 (10), 102903 (2011)。 6 Uwe Schroeder、S Mueller、Johannes Mueller、Ekatarina Yurchuk、D Martin、Christoph Adelmann、Till Schloesser、Ralf van Bentum 和 Thomas Mikolajick,ECS 固体科学与技术杂志 2 (4),N69 (2013)。 7 H Alex Hsain、Younghwan Lee、Gregory Parsons 和 Jacob L Jones,《应用物理快报》116 (19)、192901 (2020)。 8 Johannes Muller、Tim S Boscke、Uwe Schroder、Stefan Mueller、Dennis Brauhaus、Ulrich Bottger、Lothar Frey 和 Thomas Mikolajick,《纳米快报》12 (8),4318 (2012)。9 Yuh-Chen Lin、Felicia McGuire 和 Aaron D Franklin,《真空科学与技术 B 期刊》,《纳米技术和微电子学:材料、加工、测量和现象》36 (1),011204 (2018)。10 Justin C Wong 和 Sayeef Salahuddin,《IEEE 会议纪要》107 (1),49 (2018)。 11 C Zacharaki、P Tsipas、S Chaitoglou、EK Evangelou、CM Istrate、L Pintilie 和 A Dimoulas,《应用物理快报》116 (18), 182904 (2020)。 12 Zoran Krivokapic、U Rana、R Galatage、A Razavieh、A Aziz、J Liu、J Shi、HJ Kim、R Sporer 和 C Serrao,在 2017 年 IEEE 国际电子器件会议 (IEDM) 上发表,2017 年(未发表)。 13 Shen-Yang Lee、Han-Wei Chen、Chiuan-Huei Shen、Po-Yi Kuo、Chun-Chih Chung、Yu-En Huang、Hsin-Yu Chen 和 Tien-Sheng Chao,IEEE 电子器件快报 40 (11), 1708 (2019)。 14 Sujay B Desai、Surabhi R Madhvapathy、Angada B Sachid、Juan Pablo Llinas、Qingxiao Wang、Geun Ho Ahn、Gregory Pitner、Moon J Kim、Jeffrey Bokor 和 Chenming Hu,Science 354 (6308), 99 (2016)。15 Amirhasan Nourbakhsh、Ahmad Zubair、Redwan N Sajjad、Amir Tavakkoli KG、Wei Chen、Shiang Fang、Xi Ling、Jing Kong、Mildred S Dresselhaus 和 Efthimios Kaxiras,Nano letters 16 (12), 7798 (2016)。16 Felicia A McGuire、Zhihui Cheng、Katherine Price 和 Aaron D Franklin,Applied Physics Letters 109 (9), 093101 (2016)。 17 Felicia A McGuire、Yuh-Chen Lin、Katherine Price、G Bruce Rayner、Sourabh Khandelwal、Sayeef Salahuddin 和 Aaron D Franklin,《Nano Letters》17 (8),4801 (2017)。18 Yuh-Chen Lin、Felicia McGuire、Steven Noyce、Nicholas Williams、Zhihui Cheng、Joseph Andrews 和 Aaron D Franklin,《IEEE 电子设备学会杂志》7,645 (2019)。19 Mengwei Si、Chun-Jung Su、Chunsheng Jiang、Nathan J Conrad、Hong Zhou、Kerry D Maize、Gang Qiu、Chien-Ting Wu、Ali Shakouri 和 Muhammad A Alam,《自然纳米技术》13 (1),24 (2018)。 20 Amirhasan Nourbakhsh、Ahmad Zubair、Sameer Joglekar、Mildred Dresselhaus 和 Tomás Palacios,纳米尺度 9 (18), 6122 (2017)。 21 Girish Pahwa、Amit Agarwal 和 Yogesh Singh Chauhan,IEEE Transactions on Electron Devices 65 (11), 5130 (2018)。 22 Daewoong Kwon、Korok Chatterjee、Ava J Tan、Ajay K Yadav、Hong Zhou、Angada B Sachid、Roberto Dos Reis、Chenming Hu 和 Sayeef Salahuddin,IEEE 电子设备快报 39 (2)、300 (2017)。 23 Daewoong Kwon、Suraj Cheema、Nirmaan Shanker、Korok Chatterjee、Yu-Hung Liao、Ava J Tan、Chenming Hu 和 Sayeef Salahuddin,IEEE Electron Device Letters 40(6),993 (2019)。 24 Junichi Hattori、Koichi Fukuda、Tsutomu Ikegami、Hiroyuki Ota、Shinji Migita、Hidehiro Asai 和 Akira Toriumi,《日本应用物理学杂志》57(4S),04FD07 (2018)。
Abram, SV, Wisner, KM, Fox, JM, Barch, DM, Wang, L., Csernansky, JG, MacDonald, AW, & Smith, MJ (2017)。额颞叶连接可预测精神分裂症患者的认知共情缺陷和体验性负面症状。人脑映射,38 (3),1111 – 1124。https://doi.org/10.1002/hbm.23439 Abubacker, NF, Azman, A., Doraisamy, S., Azmi Murad, MA, Elmanna, MEM, & Saravanan, R. (2014)。乳腺医学图像语义注释中关联规则挖掘的基于相关性的特征选择。计算机科学讲义,482 – 493。https://doi.org/10.1007/978-3-319-12844-3_41 Adhikari, BM、Hong, LE、Sampath, H.、Chiappelli, J.、Jahanshad, N.、Thompson, PM、Rowland, LM、Calhoun, VD、Du, X.、Chen, S. 和 Kochunov, P. (2019)。精神分裂症中的功能性网络连接障碍和核心认知缺陷。 Human Brain Mapping,40 (16), 4593 – 4605。https://doi.org/10.1002/hbm.24723 Baker, JT, Holmes, AJ, Masters, GA, Yeo, BTT, Krienen, F., Buckner, RL, & Öngür, DJ (2014)。精神分裂症和精神病性躁郁症患者的皮质关联网络破坏。JAMA Psy-chiatry,71 (2), 109 – 118。https://doi.org/10.1001/jamapsychiatry。 2013.3469 Beaty, RE, Kenett, YN, Christensen, AP, Rosenberg, MD, Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, TR, Kane, MJ, & Silvia, PJ (2018). 通过大脑功能连接对个人创造力进行稳健预测。美国国家科学院院刊,115 (5), 1087 – 1092。https://doi.org/10.1073/pnas.1713532115 Berman, RA, Gotts, SJ, McAdams, HM, Greenstein, D., Lalonde, F., Clasen, L., Watsky, RE, Shora, L., Ordonez, AE, Raznahan, A., Martin, A., Gogtay, N., & Rapoport, J. (2016). 感觉运动和社会认知网络中断是儿童期发病的精神分裂症症状的基础。 Brain , 139 (1), 276 – 291。https://doi.org/10.1093/brain/ awv306 Binder, JR、Desai, RH、Graves, WW 和 Conant, LL (2009)。语义系统在哪里?对 120 项功能神经影像学研究的评论与荟萃分析。大脑皮层 , 19 (12), 2767 – 2796。https://doi.org/10.1093/cercor/bhp055 Bonnici, HM、Kumaran, D.、Chadwick, MJ、Weiskopf, N.、Hassabis, D. 和 Maguire, EA (2012)。解码内侧颞叶中的场景表征。海马, 22 (5), 1143 – 1153。https://doi. org/10.1002/hipo.20960 Brady, R.、Tandon, N.、Keshavan, M. 和 Ongur, D. (2017)。精神分裂症的阴性症状和额顶叶回路功能障碍。生物精神病学, 81 (10), S111。https://doi.org/10.1016/j.biopsych.2017. 02.285 Briggs, RG、Chakraborty, AR、Anderson, CD、Abraham, CJ、Palejwala, AH、Conner, AK、Pelargos, PE、O'Donoghue, DL、Glenn, CA 和 Sughrue, ME (2019)。下额回的解剖学和白质连接。临床解剖学,32 (4), 546 – 556。https://doi.org/10.1002/ca.23349 Cai, M., Ji, Y., Zhao, Q., Xue, H., Sun, Z., Wang, H., Zhang, Y., Chen, Y., Zhao, Y., Zhang, Y., Lei, M., Wang, C., Zhuo, C., Liu, N., Liu, H., & Liu, F. (2024)。精神分裂症中的同源功能连接中断及其相关基因表达。神经影像,289,120551。https://doi.org/10.1016/j.neuroimage。 2024.120551 Chen, J., Müller, VI, Dukart, J., Hoffstaedter, F., Baker, JT, Holmes, AJ, Vatansever, D., Nickl-Jockschat, T., Liu, X., Derntl, B., Kogler, L., Jardri, R., Gruber, O., Aleman, A., Sommer, IE, Eickhoff, SB, & Patil, KR (2021). 任务定义大脑网络的内在连接模式允许个体预测认知症状
参考文献 [1] ASE Group,什么是 2.5D?[视频],https://ase.aseglobal.com/en/technology/advanced_25dic (2022) 于 2022 年 7 月 16 日在 https://coms.aseglobal.com/marcom/video/25d-ic 时间戳 1:20 访问。 [2] A. Gupta、Z. Tao、D. Radisic、H. Mertens、OV Pedreira、S. Demuynck、J. Bömmels、K. Devriendt、N. Heylen、S. Wang、K. Kenis、L. Teugels、F. Sebaai、C. Lorant、N. Jourdan、B. Chan、S. Subramanian、F. Schleicher、A. Peter、N. Rassoul、Y. Siew、B. Briggs、D. Zhou、E. Rosseel、E. Capogreco、G. Mannaert、A. Sepúlveda、E. Dupuy、K. Vandersmissen、B. Chehab、G. Murdoch、E. Altamirano Sanchez、S. Biesemans、Z. Tőkei、ED Litta 和 N. Horiguchi,CMOS 埋入式电源轨集成扩展到 3 nm 节点以上,SPIE (2022)。 [3] HSP Wong、K. Akarvardar、D. Antoniadis、J. Bokor、C. Hu、T.-J。 King-Liu、S. Mitra、JD Plummer 和 S. Salahuddin,IEEE 论文集,108, 478 (2020)。 [4] CD Hartfield、TM Moore 和 S. Brand,《微电子故障分析:案头参考》,第 7 版,T. Gandhi 编辑,ASM International (2019)。 [5] BAJ Quesson、PLMJ 诉 Neer、MS Tamer、K. Hatakeyama、MH 诉 Es、MCJM 诉 Riel 和 D. Piras,Proc.SPIE (2022)。 [6] A. Gu、M. Terada 和 A. Andreyev,《计算机分层成像与 3D X 射线显微镜在电子故障分析中的简要比较》,Carl Zeiss Microscopy GmbH [白皮书],(2022 年)。[7] J. Lehtinen、J. Munkberg、J. Hasselgren、S. Laine、T. Karras、M. Aittala 和 T. Aila,《Noise2Noise:无需清洁数据即可学习图像恢复》,《第 35 届国际机器学习会议论文集》,D. Jennifer 和 K. Andreas 编辑,第 2965 页,PMLR,《机器学习研究论文集》(2018 年)。[8] M. Andrew、R. Sanapala、A. Andreyev、H. Bale 和 C. Hartfield,《使用高级算法增强 X 射线显微镜》,《显微镜与分析》,Wiley Analytical Science(2020 年)。 [9] A. Gu、A. Andreyev、M. Terada、B. Zee、S. Mohammad-Zulkifli 和 Y. Yang,载于 ISTFA 2021,第 291 页(2021 年)。[10] IEEE,《2021 年国际设备和系统路线图》,[白皮书],(2021 年)。[11] E. Sperling,《先进封装中的变化制造麻烦》,载于《半导体工程》,[白皮书],(2022 年)。[12] T. Rodgers、A. Gu、G. Johnson、M. Terada、V. Viswanathan、M. Phaneuf、J. de Fourestier、E. Ruttan、S. McCracken、S. Costello、AM Robinson、A. Gibson 和 A. Balfour,载于 ISTFA,第 291 页(2022 年)。 [13] B. Tordoff、C. Hartfield、AJ Holwell、S. Hiller、M. Kaestner、S. Kelly、J. Lee、S. Müller、F. Perez-Willard、T. Volkenandt、R. White 和 T. Rodgers,《Applied Microscopy》,50,24 (2020)。[14] M. Kaestner、S. Mueller、T. Gregorich、C. Hartfield、C. Nolen 和 I. Schulmeyer,《CSTIC,中国》(2019 年)。[15] T. Schubert、R. Salzer、A. Albrecht、J. Schaufler 和 T. Bernthaler,《组合光学显微镜 - FIB/SEM 对汽车车身部件的失效分析》,[白皮书],(2021)。[16] JH Li、QL Li、L. Zhao、JH Zhang、X. Tang、LX Gu、Q. Guo、HX Ma、Q.Zhou, Y. Liu, PY Liu, H. Qiu, G. Li, L. Gu, S. Guo, C.-L. Li, XH Li, FY Wu 和 YX Pan, Geoscience Frontiers, 13 (2022)。[17] V. Viswanathan、L. Jiao 和 C. Hartfield,2021 年 IEEE 第 23 届电子封装技术会议 (EPTC),第 80 页 (2021)。[18] R. Hollman,泛太平洋微电子研讨会 (2019)。[19] M. Tuček、R. Blando、R. Váňa、L. Hladík 和 JV Oboňa,国际失效分析物理学 (IPFA),新加坡 (2020)。
Blocking or Embracing the Competition: Discussing the Trade War on the Electric Vehicle Industry from a Global Perspective Arthur William Fodouop Kouam Assistant Professor, Saxo Fintech Business School, Sanya University, China E-mail: willyfodouop@163.com Abstract This study examines the multifaceted impact of the ongoing US-China trade war on the global electric vehicle (EV) industry, scrutinizing how tariffs, supply chain干扰和竞争动态使生产成本,市场份额和创新策略重塑。利用混合方法方法,我们通过多个线性回归(MLR)对从20个领先的EV市场收集的数据进行了定量分析。我们通过与15位行业专家的半结构化访谈中的定性见解相辅相成。我们的分析表明,对电动电动汽车制造商的生产成本显着提高,从而导致市场份额从中国公司向国内生产商处于关税国家的国内生产商的明显转变。此外,研究结果表明,与采取贸易保护主义措施的公司相比,拥护协作竞争的公司倾向于促进更高水平的创新水平。通过整合国际贸易理论和动态能力理论,这项研究增加了有关贸易战和工业竞争力的现有文献,强调了关税可能提供临时保护,但它们阻碍了EV部门的长期创新和韧性。关键字:电动汽车(EV),创新策略,市场动态,供应链中断,关税,贸易战jelcodes:F13,L62,O38 1。世界上最大的这场冲突这项研究通过对贸易战对全球规模的影响进行全面分析来填补一个关键的差距,从而为政策制定者和行业利益相关者提供了战略建议,这些建议是快速发展的景观。引言全球电动汽车(EV)行业在环境问题,政府支持和技术进步的推动下经历了显着的增长(Mutta&Soumya,2024; Chaudhari,2024)。市场正在迅速扩展,成熟的汽车制造商和新进入者都争夺市场份额(Mutta&Soumya,2024年)。evs提供了许多好处,包括减少的排放和能源独立性(Chaudhari,2024; Tilkar等,2024)。然而,挑战持续存在,例如范围焦虑,有限的充电基础设施和更高的前期成本(Mutta&Soumya,2024; Sun等,2020)。政府的激励措施和政策在促进电动汽车的采用方面起着至关重要的作用(Sun等,2020; Tilkar等,2024)。电池技术的进步和充电基础设施的扩展有助于该行业的增长(Tilkar等,2024)。 但是,中国与美国之间的贸易战已经对全球行业(尤其是技术和钢铁部门)引入了重大复杂性。 它破坏了供应链,网络安全风险增加并影响了知识产权问题(Choudary&Saleem,2023年)。 冲突导致了对基本技术产品的关税,从而影响了价格和供应链效率(Choudary&Saleem,2023; Bown,2020)。电池技术的进步和充电基础设施的扩展有助于该行业的增长(Tilkar等,2024)。但是,中国与美国之间的贸易战已经对全球行业(尤其是技术和钢铁部门)引入了重大复杂性。它破坏了供应链,网络安全风险增加并影响了知识产权问题(Choudary&Saleem,2023年)。冲突导致了对基本技术产品的关税,从而影响了价格和供应链效率(Choudary&Saleem,2023; Bown,2020)。在中国有直接供应商的美国公司在库存管理和盈利能力方面的表现较差,尤其是那些具有高度外包和供应基础复杂性的公司(Fan等,2022)。最初不情愿的半导体行业是通过针对供应链的出口限制来纳入冲突的(Bown,2020年)。公司现在正在重新评估中国的制造和采购依赖性,寻求替代生产地点和新市场(Choudary&Saleem,2023年)。贸易战的影响范围超出了美国和中国,影响了钢铁部门的欧盟和奥地利公司等其他政党(Scheipl等,2020)。美国和中国之间不断升级的贸易紧张局势导致关税和限制影响了包括电动汽车部门在内的各个行业。这些措施导致价格上涨,供应链中断以及两国之间的贸易减少(Mutambara,2019年; Choudary,2023年)。电动汽车行业的快速增长加剧了对钴,加剧供应链脆弱性等关键材料的需求(Liu等,2023)。地缘政治风险和电动汽车需求冲击显着影响了钴供应链,在严重的进口量下,潜在价格上涨高达15.01%(Liu等,2023)。汽车行业向电动汽车的过渡促使供应链生态系统发生了深刻的变化,从而影响了供应商的关系和协作(Jagani等,2024)。此外,贸易战引起了人们对电动汽车行业的长期可持续性的关注。诸如改进回收技术,增加库存和探索物质替代的策略以增强弹性(Liu等,2023)。始于2018年的美国 - 中国贸易战争涉及两个国家对彼此商品征收关税(Khan&Khan,2022; SU,2024; Qiu等人,2019年; Ovuakporaye,2020年)。
通讯作者:墨尔本人口与全球健康学院流行病学与生物统计学中心Mark A. Jenkins,澳大利亚VIC 3010,墨尔本大学。m.jenkins@unimelb.edu.au。 *请参阅贡献者部分和附录P1-6中的作者姓名列表。 贡献者AKW,RWH,FAM,GM和MAJ概念化了研究调查。 AKW,RWH,FAM,GM和MAJ获得了资金。 JCR,GL和AST在AKW和MAJ的监督下为数据策划,项目管理和资源做出了贡献。 AKW,JGD和MAJ使用统计软件和方法进行了正式分析,并起草了手稿。 AKW,JCR,GL和MAJ已访问和验证的数据。 所有贡献者都参加了手稿审查和编辑。 Manuscript Writing Group: Aung Ko Win, James G. Dowty, Mark A. Jenkins Steering Committee: Mark A. Jenkins, Finlay A. Macrae, Gabriela Möslem, Robert W. Haile Central Database Group: Jeanette C. Reece, Grant Lee, Allyson S. Templeton Data Contributing Group: Kiwamu Akagi, Seçil Aksoy, Angel Alonso, Karin Alvarez, David J. Amor, Ravindran Ankathil, Stefan Aretz, Julie L. Arnold, Melyssa Aronson, Rachel Austin, Ann-Sofie Backman, Sanne W. Bajwa–ten Broeke, Verónica Barca-Tierno, Julian Barwell, Inge Bernstein, Pascaline Berthet, Beate Betz, Yves-Jean Bignon, Talya Boisjoli, Valérie Bonadona, Laurent Briollais, Joan Brunet, Daniel D. Buchanan, Karolin Bucksch, Bruno Buecher, Reinhard Buettner, John Burn, Trinidad Caldés, Gabriel Capella, Olivier Caron, Graham Casey, Min H. Chew, Yun-hee Choi, James Church, Mark Clendenning, Chrystelle Colas,Elisa J. Woods,Tatsuro Yamaguchi,Silke Zachariae,Mohd N. Zahary。m.jenkins@unimelb.edu.au。*请参阅贡献者部分和附录P1-6中的作者姓名列表。贡献者AKW,RWH,FAM,GM和MAJ概念化了研究调查。AKW,RWH,FAM,GM和MAJ获得了资金。JCR,GL和AST在AKW和MAJ的监督下为数据策划,项目管理和资源做出了贡献。 AKW,JGD和MAJ使用统计软件和方法进行了正式分析,并起草了手稿。AKW,JCR,GL和MAJ已访问和验证的数据。所有贡献者都参加了手稿审查和编辑。Manuscript Writing Group: Aung Ko Win, James G. Dowty, Mark A. Jenkins Steering Committee: Mark A. Jenkins, Finlay A. Macrae, Gabriela Möslem, Robert W. Haile Central Database Group: Jeanette C. Reece, Grant Lee, Allyson S. Templeton Data Contributing Group: Kiwamu Akagi, Seçil Aksoy, Angel Alonso, Karin Alvarez, David J. Amor, Ravindran Ankathil, Stefan Aretz, Julie L. Arnold, Melyssa Aronson, Rachel Austin, Ann-Sofie Backman, Sanne W. Bajwa–ten Broeke, Verónica Barca-Tierno, Julian Barwell, Inge Bernstein, Pascaline Berthet, Beate Betz, Yves-Jean Bignon, Talya Boisjoli, Valérie Bonadona, Laurent Briollais, Joan Brunet, Daniel D. Buchanan, Karolin Bucksch, Bruno Buecher, Reinhard Buettner, John Burn, Trinidad Caldés, Gabriel Capella, Olivier Caron, Graham Casey, Min H. Chew, Yun-hee Choi, James Church, Mark Clendenning, Chrystelle Colas,Elisa J.Woods,Tatsuro Yamaguchi,Silke Zachariae,Mohd N. Zahary。COPS,ISABELLE COUPLER,MARCIA CROSS,CRUZ,WIND,Adriana Della Valley,Capuchine Delnatte,Marion Dhooge,Valentine Domingues,Drouet Youenn,Floor A.发言人D. Gareth Evans,Vargas的AídaFalse,Jane C Figueird,William,William,Lauren M. Gimaud,Annabel Goodwin,Heike Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,Kate Green,kate Green, Jose Guillem,Roselyne,Rodrigo St. C. Guindani,Elizabeth E. Half,Michael,Hampel Heather,Thomas V. Ho,Elke Holinski-Feder。
