在人类活动导致的气候危机背景下[1,2],由于基于混合金属卤化物钙钛矿材料的太阳能装置的发展,光伏领域在过去几年中取得了迅速发展。 [3] 目前,这些装置的效率已经与商业硅电池相媲美。 [4] 迄今为止,最高效的钙钛矿太阳能电池 (PSC) 是通过使用介孔 TiO 2 (m-TiO 2) 作为电子传输层 (ETL) 的介观结构实现的。介孔支架通常掺杂吸湿化合物如锂盐以增强其电子迁移率。 [5–8] 虽然锂处理提高了钙钛矿装置的性能,因为它主要提高了电池的开路电压和填充因子,但它也导致太阳能装置对环境湿度的不稳定性更大,以及其光伏参数的低可重复性。 [9,10] 事实上,目前 PSC 实际应用面临的一些最重要瓶颈与创纪录的效率无关,而是与以下两个方面有关:1) 缺乏可重复的制造方法;2) 在实际室外条件下(湿度、紫外线照射、温度等)固有的低稳定性。在第一种情况下,PSC 的效率分散性在更受认可的实验室中并不狭窄,正如 Saliba 等人 [9] Jimenez-López 等人 [11] Qiu 等人 [12] 等许多学者在该主题的参考文章中对此进行了彻底讨论。其次,PSC 对环境条件的敏感性,尤其是钙钛矿材料,要求使用干气氛手套箱,这阻碍了这些太阳能装置的大规模生产。 [13–18] 在此背景下,许多研究人员致力于寻找钝化材料来修改中间层,这些材料不会损害器件的性能,但可以提高器件的稳定性。到目前为止,用于钝化界面的材料包括二维钙钛矿、金属氧化物化合物或绝缘有机材料。这些报道的方法通常使用溶液法,然而,尚未探索可扩展到工业制造的替代真空工艺。[19–21]
在人类行为引起的气候危机的情况下,[1,2]由于基于杂种金属卤化物钙钛矿配合的太阳能设备的发展,光电场在过去几年中经历了快速行为。[3]当前,这些设备已经达到了商业硅细胞的竞争效率。[4]迄今为止,使用中孔TIO 2(M -Tio 2)作为电子传输层(ETL),通过中端架构实现了最高效的钙钛矿太阳能电池(PSC)。介孔支架与吸湿化合物(如锂盐)相掺杂,以增强其电子迁移率。[5–8]尽管Li-Greatment主要改善了钙钛矿设备的性能,因为它主要改善了细胞的开路电压和填充因子,但它也会导致太阳能设备针对环境水分的不稳定性以及其光伏参数的低可重复性。[9,10]的确,如今为PSC实际开发而要克服的一些最重要的瓶颈与记录效率无关,而与两者都没有有关:1)他们缺乏可复制的制造方法; 2)固有的低稳定性在逼真的室外条件下(水分,紫外线照明,温度等)。在第一种情况下,PSC的效率分散率在更公认的实验室中远非狭窄,因为它已经在有关该主题的参考文章中进行了彻底讨论,因为Saliba等人,[9] Jimenez-López等人,[11] Qiu等。[12]和许多其他。[19-21]在第二位,PSC对环境条件的敏感性,尤其是对钙钛矿材料的敏感性,施加了使用干燥大气盒的使用,这阻碍了这些太阳能设备的大规模生产。[13–18]在这种情况下,许多研究人员致力于寻找钝化材料,以修改不利于设备的性能但会提高其稳定性的层中层。到目前为止,用于钝化界面的材料包括2D钙钛矿,金属氧化物化合物或绝缘有机材料。这些报道的方法通常使用解决方案方法,但是,尚未探索任何可扩展到工业制造的替代真空工艺。
3。ruan d#,ye zw#,yuan s#,li z#,Zhang W#,ong cp,tang k,tank k,tam ttkk,guo j,xuan y,xuan y,huang y,zhang Q,Zhang Q,Zhang Q,Lee cl,Lu L,Lu L, div>>
儿童中许多传染病的发生与初始病毒感染直接相关,而对病毒感染的免疫反应则导致了随后的病理生理变化(Getts等,2013)。儿童在对病毒的敏感性以及他们引起的免疫反应的种类方面有很大不同(Prendergast等,2012)。婴儿在暴露于不同环境时通常代表关键窗口,病毒感染可以调节免疫细胞的成熟度,甚至可以重塑其免疫系统的功能(Renz和Skevaki,2021)。这意味着先天免疫在从新生儿到成年人的发育过程中演变(例如Schreurs等,2021),例如,干扰素反应较弱,可以解释其对病毒感染的敏感性的增加。在其中,一种非常典型的疾病是胆道闭锁(BA)。ba被认为是病毒诱导的自身免疫性疾病(Mack,2007),其中病毒感染,尤其是轮状病毒,通常被视为发病机理中的发起剂。已知,发现NK细胞的激活以年龄依赖性的方式被炎性细胞因子上调(Sundstrom等,2007)。随着NK细胞随着小鼠的年龄的增长而增加的活化,它们会在轮状病毒感染的胆管细胞上增加细胞毒性,从而导致持续性胆道损伤并导致BA(Qiu等,2014)。另一方面,成年NK细胞在感染后不久消除了轮状病毒感染的胆管细胞,从而阻止了这种情况下胆管中持续的轮状病毒感染。Russo等。除了BA外,还具有类似的免疫细胞成熟模式的儿童中还有其他一些病毒感染疾病。因此,儿童免疫细胞成熟与病毒感染之间的特殊关系需要将来深入研究。在这个主题研究主题中,向读者提供了5项高质量的原始研究。作者从不同角度研究了病毒感染后儿童免疫功能变化的特征,治疗方法和证据,并向读者指出了未来的研究热点。尽管Covid-19在过去三年中已成为研究热点,但儿童Covid-19感染的发生率低于成年人的原因仍然不清楚。尤其是,关于COVID-19的儿童的T细胞反应知之甚少。提供了一种新的观点,即不同CD4 +
Research POSTER TITLE Reinforcement learning mechanisms of antidepressant treatments (RELMED) AUTHORS Abir Y, Qiu Z, Dercon Q, Mkrtchian A, Dolan R, Kessler D, Leurent B, Morriss R, Nazareth I, Nixon N, Watson S, Wiles N, Peddada A, Browning M, Huys Q ABSTRACT Two extensive literatures concern the neuromodulators 5-羟色胺,多巴胺和去甲肾上腺素。首先,许多双盲随机临床试验证实了针对这些神经调节剂抑郁症治疗的药物的功效。第二,同样令人信服的作品已经为这些神经调节剂在增强学习(RL)中确立了因果关系。计算精神病学的跨学科领域试图弥合这两个领域。然而,抑郁症治疗中RL机制的程度尚不确定。我们介绍了Relmed,该项目旨在确定针对各种神经调节剂的抗抑郁药是否参与RL的不同组成部分。Relmed包括在英国初级保健中进行的两次连续双盲随机临床试验。每个试验涉及516名随机接受安非他酮,依他普兰或安慰剂的抑郁症患者。最初的试验将探索广泛的RL域,随后的试验检查了特定的RL机制。在第一次试用期间,参与者将进行一系列在线行为RL任务。与标准方法不同,Relmed测量了单个连贯的任务框架内的多个RL机制,包括食欲和厌恶仪器学习,Pavlovian-工具传递,可控性,工作记忆和平均奖励效果。2。我们概述了任务序列,测试可靠性以及可接受性和用户测试的结果。本杰·巴内特(Benjy Barnett) - 人类神经影像学标题的惠康中心(Wellcome)中心创造了一些东西:人脑作者Barnett B中数值零的符号和非符号表示,弗莱明(Fleming)摘要代表零数量零,被认为是抽象人类思想的独特成就。尽管在理解支持自然数的神经代码方面取得了很大进展,但在人脑中如何编码数值零仍然未知。我们发现
7:30 - 8:00 早餐 8:00 - 8:10 开幕词:Michael G. Fehlings 博士、Carol Swallow GALLIE-BATEMAN 博士、MCMURRICH 和转化研究演讲 |会议主席:Mojgan Hodaie 博士 8:10 – 8:25 Julian Daza (SSTP)、Peter Smith、Shabbir Alibhai、Erin Kennedy、Duminda Wijeysundera、FIT 术后研究人员:“术前虚弱对大型手术后老年患者严重术后残疾的影响:一项多中心前瞻性队列研究” 8:25 – 8:40 Jack W. Hickmott、Gajeni Prabaharan、Tom Enbar、Ricky Siu、Varanan Vejeyathaas、Kriesha Eyer、Cindi M. Morshead:“将星形胶质细胞转化为神经元:开发基因治疗方法修复中风损伤的大脑” 8:40 – 8:55 Chloe R. Wong (SSTP)、Alice Zhu、Helene Retrouvey、Heather L. Baltzer、Christopher Witiw:“成本效用分析大拇指腕掌关节骨关节炎的“大拇指切除术和韧带重建肌腱插入与缝合悬吊关节成形术” 8:55 – 9:10 Kumi Mesaki、Haruchika Yamamoto、Stephen Juvet、Jonathan Yeung、Zehong Guan、Akhi Akhter、Cameron Dickie、Henna Mangat、Aizhou Wang、Gavin W. Wilson、Andrea Mariscal、Jim Hu、Alan R. Davidson、Benjamin P. Kleinstiver、Marcelo Cypel、Mingyao Liu、Shaf Keshavjee:“利用 CRISPR-Cas 技术对供体肺进行基因组编辑以进行免疫学修改用于移植” 9:10 – 9:25 Alex Landry (SSTP)、Jeff Zuccato、Vikas Patil、Mat Voisin、Justin Wang、Yosef Ellenbogen、Chloe Gui、 Andrew Ajisebutu、Farshad Nassiri、Gelareh Zadeh:“脑脊液甲基化组和蛋白质组的整合可避免中枢神经系统淋巴瘤手术活检的需要” 9:25 – 9:40 Kevin R. An、Dominique Vervoort、Feng Qiu、Derrick Y. Tam、Rodolfo V. Rocha、Lamia Harik、Sameer Hirji、Mario FL Gaudino、Harindra C. Wijeysundera、Stephen E. Fremes:“重度冠状动脉疾病女性患者经皮冠状动脉介入治疗与冠状动脉搭桥术的长期疗效对比” 9:40 - 10:40 电子海报展示
?),ying.zhang84@whu.edu.cn(y.z。)https://doi.org/10.1016/j.stem.2023.10.007https://doi.org/10.1016/j.stem.2023.10.007
1。Y. Tanaka,T。Komine,S。Haruyama和M. Nakagawa,第12届IEEE国际个人,室内和移动无线电通信研讨会。PIMRC2001。诉讼(CAT。No.01th8598),美国加利福尼亚州圣地亚哥,(2001年)。 2。http://www.naka-lab.jp› kit_e 3。 [在线] www.nobelprize.org/prizes/physics/2014/press-release/,上一次于2021年4月1日访问4. S.M. Riurean等 在地下矿山中应用可见光无线通信(瑞士施普林格,2021年)。 5。 A. E. Marcu,R。A。Dobre和M.Vlãdescu,2020 43届国际电信与信号处理会议(TSP),意大利米兰,2020年,2020年,pp。 166-169,(2020)。 6。 S. Riurean,R.A。 Dobre,A.E。 MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。 7。 a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。 8。 Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。 9。 Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。 10。 N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。 11。 L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。No.01th8598),美国加利福尼亚州圣地亚哥,(2001年)。2。http://www.naka-lab.jp› kit_e 3。[在线] www.nobelprize.org/prizes/physics/2014/press-release/,上一次于2021年4月1日访问4.S.M. Riurean等 在地下矿山中应用可见光无线通信(瑞士施普林格,2021年)。 5。 A. E. Marcu,R。A。Dobre和M.Vlãdescu,2020 43届国际电信与信号处理会议(TSP),意大利米兰,2020年,2020年,pp。 166-169,(2020)。 6。 S. Riurean,R.A。 Dobre,A.E。 MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。 7。 a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。 8。 Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。 9。 Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。 10。 N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。 11。 L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。S.M.Riurean等 在地下矿山中应用可见光无线通信(瑞士施普林格,2021年)。 5。 A. E. Marcu,R。A。Dobre和M.Vlãdescu,2020 43届国际电信与信号处理会议(TSP),意大利米兰,2020年,2020年,pp。 166-169,(2020)。 6。 S. Riurean,R.A。 Dobre,A.E。 MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。 7。 a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。 8。 Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。 9。 Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。 10。 N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。 11。 L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。Riurean等在地下矿山中应用可见光无线通信(瑞士施普林格,2021年)。5。A. E. Marcu,R。A。Dobre和M.Vlãdescu,2020 43届国际电信与信号处理会议(TSP),意大利米兰,2020年,2020年,pp。166-169,(2020)。 6。 S. Riurean,R.A。 Dobre,A.E。 MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。 7。 a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。 8。 Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。 9。 Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。 10。 N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。 11。 L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。166-169,(2020)。6。S. Riurean,R.A。 Dobre,A.E。 MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。 7。 a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。 8。 Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。 9。 Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。 10。 N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。 11。 L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。S. Riurean,R.A。 Dobre,A.E。MARCU,会议记录第11718卷,光电学,微电子学和纳米技术的高级主题x; 117182b(2020)。7。a.m. Căilean,M。Dimian,V。Popa,传感器,20(13),3764(2020)。8。Shaaban Rana,Faruque Saleh,物理交流,40,101094,(2020)。9。Tannaz Sirous,Ghobadi Changiz,Nourinia Javad等人,无线个人通讯,113(1),17-32,(2020)。10。N. Anous,M。Abdallah,M。Uysal等人,IEEE Access,6,22408-22420,(2020)。11。L. 66,否。 9,pp。 4059-4073,(2018)。 12。 S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。L.66,否。9,pp。4059-4073,(2018)。12。S。Riurean,载于:Antipova T.(Eds)可理解的科学。 ICCS2020。 Springer,Cham(2021)。S。Riurean,载于:Antipova T.(Eds)可理解的科学。ICCS2020。Springer,Cham(2021)。Springer,Cham(2021)。网络中的注释,186。13。C. H. Yeh,C。W。Cow,H。Chhen,L。L。Liu和D. Z. Hsu,J。 光学,18,否。 6,pp。 1–9,(2016年)。 14。 他们。 J. Comput。 netw。 &Common。,第1卷。 7,不。 6,pp。 139–150,(2015)15。 m 16。 ieeeeeeeeeeeeeeeeeeeea 15 https://www.ieeeeee802.org H.Crown,R。Severin和E. Tovar,J。Sens。 新律师,10,23,(2021)18。 G. Blinowski,234–239,(2015)19。 S. Riurean,R.A。水,A.E。 市场,第11718卷11718 11718 11718进步,微电子学,x; 117182b(2020) S. Rocha,M。Leba和A. Ionica,J Med Syst 43:1-10,(2019年)。 21。 Y. Qiu,H.-H。 Chhen,W.-X. Meng,电话。 公社。 暴民。 计算 16(14),2016-2034,(2016)22。 Z. Ghassemloy,圣Zvanovec,硕士 Khalighi,L.N。 alves。 23。 F. Javaid,A。Wang。C. H. Yeh,C。W。Cow,H。Chhen,L。L。Liu和D. Z. Hsu,J。光学,18,否。6,pp。1–9,(2016年)。14。他们。J. Comput。netw。&Common。,第1卷。7,不。6,pp。139–150,(2015)15。m16。ieeeeeeeeeeeeeeeeeeeea 15 https://www.ieeeeee802.orgH.Crown,R。Severin和E. Tovar,J。Sens。新律师,10,23,(2021)18。G. Blinowski,234–239,(2015)19。S. Riurean,R.A。水,A.E。 市场,第11718卷11718 11718 11718进步,微电子学,x; 117182b(2020) S. Rocha,M。Leba和A. Ionica,J Med Syst 43:1-10,(2019年)。 21。 Y. Qiu,H.-H。 Chhen,W.-X. Meng,电话。 公社。 暴民。 计算 16(14),2016-2034,(2016)22。 Z. Ghassemloy,圣Zvanovec,硕士 Khalighi,L.N。 alves。 23。 F. Javaid,A。Wang。S. Riurean,R.A。水,A.E。市场,第11718卷11718 11718 11718进步,微电子学,x; 117182b(2020)S. Rocha,M。Leba和A. Ionica,J Med Syst 43:1-10,(2019年)。21。Y. Qiu,H.-H。 Chhen,W.-X. Meng,电话。 公社。 暴民。 计算 16(14),2016-2034,(2016)22。 Z. Ghassemloy,圣Zvanovec,硕士 Khalighi,L.N。 alves。 23。 F. Javaid,A。Wang。Y. Qiu,H.-H。 Chhen,W.-X.Meng,电话。公社。暴民。计算16(14),2016-2034,(2016)22。Z. Ghassemloy,圣Zvanovec,硕士 Khalighi,L.N。 alves。 23。 F. Javaid,A。Wang。Z. Ghassemloy,圣Zvanovec,硕士Khalighi,L.N。 alves。 23。 F. Javaid,A。Wang。Khalighi,L.N。alves。23。F. Javaid,A。Wang。
自 1984 年 Bennett 和 Brassard[1]提出量子密钥分发 (QKD) 协议以来,量子密码学引起了广泛的关注。它的安全性由海森堡不确定性原理、量子不可克隆定理等量子力学原理保证。量子密码学可以提供无条件安全的优势,使得量子密码学的研究越来越重要。目前,量子密码学的许多重要分支已被发展起来,如量子密钥分发[2,3]、量子签名 (QS)[4–6]、量子隐形传态 (QT) [7]、量子认证 [8]、确定性安全量子通信 [9]。量子签名可用于验证发送者的身份和信息的完整性。仲裁量子签名 (AQS) 因具有许多优点而备受关注。2002 年,曾文胜等 [9] 在量子密码学中提出了一种基于仲裁的量子签名方案。 [ 10 ] 利用格林-霍恩-泽林格 (GHZ) 态和量子一次性密码本 (QOTP) 提出了第一个仲裁量子签名方案。该方案在经典仲裁数字签名的设计基础上,利用可信第三方仲裁员提供的在线签名为签名者和接收者提供重新验证服务。2008 年,Curty 和 Lutkenhaus [ 11 ] 研究了该方案 [ 10 ],他们认为该方案描述不清楚,安全性分析不正确。针对 Curty 等人的争议,曾等人 [ 12 ] 更详细地证明了该方案 [ 10 ]。2009 年,为了降低协议的复杂度和提高效率 [ 10 ],李等人 [ 12 ] 提出了一种仲裁量子签名方案 [ 10 ]。 [ 13 ] 提出了一种基于Bell态而非GHZ态的AQS方案,并证明了其在传输效率和低复杂度方面的优势。遗憾的是,2010年,Zou和Qiu [ 14 ] 认为李的AQS方案可以被接收方否认,并提出了利用公告板等不使用纠缠态的安全方案的AQS协议。他们的方案进一步简化了李等人的协议,并利用单粒子设计了可以抵抗接收方否认的改进AQS方案,从而降低了AQS的物理实现难度。然而,2011年,Gao等人[ 15 ] 首次从伪造和否认方面对先前的AQS方案进行了全面的密码分析。
Ahshin-Majd,St.Sant,Zamani,St.,Shiamia,T.,Kiasalari,Z在糖尿病诱导的糖尿病患者中认知改善的carnals:涉及机制的可能性。肽,86,102–1https:// doi。骄傲/ 10。 div>1016/j。。2016。10。008 Albrecht,T.,Schilperoort,M.,Zhang,Sant,St. D.,Qiu,J.,Rodriguez,A. 。,L.,L.,L.,L.,L.,L.,L.,L.,L. Denisi,A.,Aldini,G.,Born,J.,Yard,B.A.和Human,S。J.(2017)。系统报告,7,44492。https:// doi。骄傲/ 10。 div>1038/ srep4 4492 Alhamdani,M。S.,Al-Casser,A。肉肽抗氧化剂抗氧化效率抗葡萄糖降解在您的亲自间皮中产生的葡萄糖降解。临床实践,107(1),C26 – C3https:// doi。骄傲/ 10。 div>1159/00010 6509 11509科学与营养食品,1(2),172-183。https:// doi。骄傲/ 10。 div>1002/ fsn325 25 Almage,Am,Alam,I.,Abulmeaty,M.,Razak,S.,G.,G。,&Alam,W。(2020)。 https:// doi。 骄傲/ 10。 div>25 25 Almage,Am,Alam,I.,Abulmeaty,M.,Razak,S.,G.,G。,&Alam,W。(2020)。https:// doi。骄傲/ 10。 div>摄入饮食中晚期糖化最终产物的炎症标志物,免疫表型和健康老年人在少量研究的人群中的能力。食品科学与营养,8(2),1046–1057。1002/ fsn3。1389 Alsheblak,M。M.,Elsherbiny,N。M.,El- Karef,A。,&Elshishtawy,M.M。(2016)。L-肌肽对CCL4诱导大鼠肝损伤的保护作用。 欧洲细胞因子网络,27(1),6-15。 https:// doi。 org/ 10。 div> 1684/ ECN。 2016。 0372 Arnold,S。E.,Arvanitakis,Z.,Macauley- Rambach,S.L.,Koenig,A.M.L-肌肽对CCL4诱导大鼠肝损伤的保护作用。欧洲细胞因子网络,27(1),6-15。https:// doi。org/ 10。 div>1684/ ECN。2016。0372 Arnold,S。E.,Arvanitakis,Z.,Macauley- Rambach,S.L.,Koenig,A.M.
