50/60Hz 0.99 最小 400W 输出(使用 SynQor ACF 滤波器)400Hz 0.97 最小 400W 输出(使用 SynQor ACF 滤波器)无功功率 34 VAR 115 Vrms 400Hz;超前,见注释 5 交流输入电流总谐波失真 4.5 % 115 Vrms 400Hz,满载,见注释 1 115 Vrms 时的各电流谐波失真水平低于 DO-160G/787B3/ABD0100.1.8 交流输入电流浪涌 1 Apk 符合 DO-160G 第 16.7.5 节,见注释 7 启用交流输入电流(无负载) 180 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 禁用交流输入电流 50 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 最大输入功率 950 W 最大输入电流 11.5 Arms 85 Vrms 输入 输出特性 满载时的输出电压设定点 见图 11 了解 VI 曲线 标准选项 27.5 28.0 28.5 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 25.0 25.5 26.0 Vdc 压降选项、电流共享分析 25.3 25.5 25.7 Vdc 压降共享操作的容差,请参阅注释 6 总输出电压范围 请参阅图 11 中的 VI 曲线 标准选项 27.2 28.8 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 24.7 29.0 Vdc 标准选项 电压调节 半载以上 过线 ±0.3 % Vin<250Vrms,如需更高的 Vin,请参阅应用说明 过载 ±2.0 % 过温 ±1.5 % 输出电压纹波和噪声 (400Hz) 请参阅注释 2 峰峰值 1.0 % RMS 0.3 % 工作输出电流范围 0 28.6 A 输出电流限制 设备在关机前继续运行 1 秒 115 Vrms 30 A 稳压 -28R 型号 230 Vrms 33 A 稳压 -28R 型号 最大输出电容 4,000 µF 半阻负载下启动 保持特性 典型保持电压 400 Vdc 保持电压范围 380 435 Vdc 保持电压随负载而变化 保持过压保护阈值 440 460 Vdc 保持欠压关断阈值 200 Vdc 保持电容 100 1000 µF 见注释 3 效率 115Vrms 时 100% 负载 89 % 效率曲线见图 1 230Vrms 时 100% 负载 91 % 效率曲线见图 1 注释 1:低于 D0-160 的各电流谐波失真水平, Airbus0100.1.8,波音 787B3 要求注 2:600µF 电解保持电容,典型 ESR 为 0.5Ω。纹波幅度取决于保持电容的电容和 ESR。注 3:转换器能够以至少 100µF 的保持电容运行,但如果需要电源系统,SynQor 建议至少使用 330µF
50/60Hz 0.99 最小 400W 输出(使用 SynQor ACF 滤波器)400Hz 0.97 最小 400W 输出(使用 SynQor ACF 滤波器)无功功率 34 VAR 115 Vrms 400Hz;超前,见注释 5 交流输入电流总谐波失真 4.5 % 115 Vrms 400Hz,满载,见注释 1 115 Vrms 时的各电流谐波失真水平低于 DO-160G/787B3/ABD0100.1.8 交流输入电流浪涌 1 Apk 符合 DO-160G 第 16.7.5 节,见注释 7 启用交流输入电流(无负载) 180 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 禁用交流输入电流 50 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 最大输入功率 950 W 最大输入电流 11.5 Arms 85 Vrms 输入 输出特性 满载时的输出电压设定点 见图 11 了解 VI 曲线 标准选项 27.5 28.0 28.5 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 25.0 25.5 26.0 Vdc 压降选项、电流共享分析 25.3 25.5 25.7 Vdc 压降共享操作的容差,请参阅注释 6 总输出电压范围 请参阅图 11 中的 VI 曲线 标准选项 27.2 28.8 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 24.7 29.0 Vdc 标准选项 电压调节 半载以上 过线 ±0.3 % Vin<250Vrms,如需更高的 Vin,请参阅应用说明 过载 ±2.0 % 过温 ±1.5 % 输出电压纹波和噪声 (400Hz) 请参阅注释 2 峰峰值 1.0 % RMS 0.3 % 工作输出电流范围 0 28.6 A 输出电流限制 设备在关机前继续运行 1 秒 115 Vrms 30 A 稳压 -28R 型号 230 Vrms 33 A 稳压 -28R 型号 最大输出电容 4,000 µF 半阻负载下启动 保持特性 典型保持电压 400 Vdc 保持电压范围 380 435 Vdc 保持电压随负载而变化 保持过压保护阈值 440 460 Vdc 保持欠压关断阈值 200 Vdc 保持电容 100 1000 µF 见注释 3 效率 115Vrms 时 100% 负载 89 % 效率曲线见图 1 230Vrms 时 100% 负载 91 % 效率曲线见图 1 注释 1:低于 D0-160 的各电流谐波失真水平, Airbus0100.1.8,波音 787B3 要求注 2:600µF 电解保持电容,典型 ESR 为 0.5Ω。纹波幅度取决于保持电容的电容和 ESR。注 3:转换器能够以至少 100µF 的保持电容运行,但如果需要电源系统,SynQor 建议至少使用 330µF
50/60Hz 0.99 最小 400W 输出(使用 SynQor ACF 滤波器)400Hz 0.97 最小 400W 输出(使用 SynQor ACF 滤波器)无功功率 34 VAR 115 Vrms 400Hz;超前,见注释 5 交流输入电流总谐波失真 4.5 % 115 Vrms 400Hz,满载,见注释 1 115 Vrms 时的各电流谐波失真水平低于 DO-160G/787B3/ABD0100.1.8 交流输入电流浪涌 1 Apk 符合 DO-160G 第 16.7.5 节,见注释 7 启用交流输入电流(无负载) 180 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 禁用交流输入电流 50 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 最大输入功率 950 W 最大输入电流 11.5 Arms 85 Vrms 输入 输出特性 满载时的输出电压设定点 见图 11 了解 VI 曲线 标准选项 27.5 28.0 28.5 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 25.0 25.5 26.0 Vdc 压降选项、电流共享分析 25.3 25.5 25.7 Vdc 压降共享操作的容差,请参阅注释 6 总输出电压范围 请参阅图 11 中的 VI 曲线 标准选项 27.2 28.8 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 24.7 29.0 Vdc 标准选项 电压调节 半载以上 过线 ±0.3 % Vin<250Vrms,如需更高的 Vin,请参阅应用说明 过载 ±2.0 % 过温 ±1.5 % 输出电压纹波和噪声 (400Hz) 请参阅注释 2 峰峰值 1.0 % RMS 0.3 % 工作输出电流范围 0 28.6 A 输出电流限制 设备在关机前继续运行 1 秒 115 Vrms 30 A 稳压 -28R 型号 230 Vrms 33 A 稳压 -28R 型号 最大输出电容 4,000 µF 半阻负载下启动 保持特性 典型保持电压 400 Vdc 保持电压范围 380 435 Vdc 保持电压随负载而变化 保持过压保护阈值 440 460 Vdc 保持欠压关断阈值 200 Vdc 保持电容 100 1000 µF 见注释 3 效率 115Vrms 时 100% 负载 89 % 效率曲线见图 1 230Vrms 时 100% 负载 91 % 效率曲线见图 1 注释 1:低于 D0-160 的各电流谐波失真水平, Airbus0100.1.8,波音 787B3 要求注 2:600µF 电解保持电容,典型 ESR 为 0.5Ω。纹波幅度取决于保持电容的电容和 ESR。注 3:转换器能够以至少 100µF 的保持电容运行,但如果需要电源系统,SynQor 建议至少使用 330µF
50/60Hz 0.99 最小 400W 输出(使用 SynQor ACF 滤波器)400Hz 0.97 最小 400W 输出(使用 SynQor ACF 滤波器)无功功率 34 VAR 115 Vrms 400Hz;超前,见注释 5 交流输入电流总谐波失真 4.5 % 115 Vrms 400Hz,满载,见注释 1 115 Vrms 时的各电流谐波失真水平低于 DO-160G/787B3/ABD0100.1.8 交流输入电流浪涌 1 Apk 符合 DO-160G 第 16.7.5 节,见注释 7 启用交流输入电流(无负载) 180 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 禁用交流输入电流 50 mArms 115 Vrms 输入,与 SynQor 滤波器一起使用时 最大输入功率 950 W 最大输入电流 11.5 Arms 85 Vrms 输入 输出特性 满载时的输出电压设定点 见图 11 了解 VI 曲线 标准选项 27.5 28.0 28.5 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 25.0 25.5 26.0 Vdc 压降选项、电流共享分析 25.3 25.5 25.7 Vdc 压降共享操作的容差,请参阅注释 6 总输出电压范围 请参阅图 11 中的 VI 曲线 标准选项 27.2 28.8 Vdc Vin<250Vrms,如需更高的 Vin,请参阅应用说明 压降选项 24.7 29.0 Vdc 标准选项 电压调节 半载以上 过线 ±0.3 % Vin<250Vrms,如需更高的 Vin,请参阅应用说明 过载 ±2.0 % 过温 ±1.5 % 输出电压纹波和噪声 (400Hz) 请参阅注释 2 峰峰值 1.0 % RMS 0.3 % 工作输出电流范围 0 28.6 A 输出电流限制 设备在关机前继续运行 1 秒 115 Vrms 30 A 稳压 -28R 型号 230 Vrms 33 A 稳压 -28R 型号 最大输出电容 4,000 µF 半阻负载下启动 保持特性 典型保持电压 400 Vdc 保持电压范围 380 435 Vdc 保持电压随负载而变化 保持过压保护阈值 440 460 Vdc 保持欠压关断阈值 200 Vdc 保持电容 100 1000 µF 见注释 3 效率 115Vrms 时 100% 负载 89 % 效率曲线见图 1 230Vrms 时 100% 负载 91 % 效率曲线见图 1 注释 1:低于 D0-160 的各电流谐波失真水平, Airbus0100.1.8,波音 787B3 要求注 2:600µF 电解保持电容,典型 ESR 为 0.5Ω。纹波幅度取决于保持电容的电容和 ESR。注 3:转换器能够以至少 100µF 的保持电容运行,但如果需要电源系统,SynQor 建议至少使用 330µF
APFICQor 隔离功率因数校正模块是一种高效、高功率 AC-DC 转换器。它通过通用 AC 输入产生隔离 DC 输出电压。提供稳压和半稳压(下垂版本)模块。如图 A 所示,典型的电源由 SynQor AeroQor AC 线路滤波器、SynQor APFICQor 模块和储能保持电容器组成。需要保险丝来满足监管安全要求。APFICQor 的主要目的之一是将从单相正弦 AC 源吸取的输入电流整形为近乎完美的正弦波形,以便 AC-DC 电源将为该源提供非常高的功率因数负载。在进行波形整形时,APFICQor 可确保交流电流波形的谐波分量低于测试标准所要求的水平。交流电流波形的总谐波失真在满载时通常小于 3%。APFICQor 首先通过以下方式完成波形整形任务
电网采用可再生能源为调节电网运行频率带来了稳定性挑战。因此,电网运营商呼吁终端用户(如数据中心)提供频率调节服务,通过根据电网需求动态调整能源消耗来帮助平衡电网的稳定性。随着可再生能源的采用,频率调节服务的平均奖励价格已远高于电力成本。因此,数据中心提供频率调节服务具有很大的成本激励。许多现有的调节数据中心功率的技术会导致性能显著下降或提供的频率调节量较低。我们提出了 PowerMorph,这是一种严格的 QoS 感知数据中心功率重塑框架,它使商品服务器能够提供实用的频率调节服务。PowerMorph 背后的关键是使用“互补工作负载”作为调节服务器功率的附加旋钮,这在满足延迟关键工作负载的严格 QoS 约束的同时提供了高供应容量。我们在一般情况下可将TCO改善高达58%,某些情况下甚至可以完全消除数据中心电费并实现净利润。
摘要 预测体验质量 (QoE) 指标的能力对于未来 B5G/6G 网络提供的多种应用和服务至关重要。然而,QoE 时间序列预测迄今为止尚未得到充分研究,主要是因为缺乏可用的真实数据集。在本文中,我们首先介绍了一种从真实的 5G 网络模拟中获得的新型 QoE 预测数据集,该数据集以视频流应用的服务质量 (QoS) 和 QoE 指标为特征;然后,我们接受了在采用 AI 系统解决 QoE 预测任务时可信度的热门挑战。我们展示了如何有效利用可解释人工智能 (XAI) 模型(即决策树)来解决预测问题。最后,我们将联邦学习确定为隐私保护协作模型训练的合适范例,并从算法和 6G 网络支持的角度概述了相关挑战。
物联网 (IoT) 系统与任何电子或机械系统一样,容易发生故障。由于老化和退化导致的硬件硬故障尤其重要,因为它们是不可恢复的,需要维修更换有缺陷的部件,成本很高。在本文中,我们为物联网边缘计算系统提出了一种新颖的动态可靠性管理 (DRM) 技术,以满足服务质量 (QoS) 和可靠性要求,同时最大限度地提高边缘设备电池的剩余能量。我们制定了一个具有电池能量目标、QoS 和终端可靠性约束的状态空间最优控制问题。我们将问题分解为低开销子问题,并使用分布在边缘设备和网关上的分层和多时间尺度控制方法来解决它。我们的结果基于实际测量和跟踪驱动的模拟,表明所提出的方案可以实现与最先进方法类似的电池寿命,同时满足可靠性要求,而其他方法则无法做到这一点。
全球信息基础设施 概述 Y.100–Y.199 服务、应用和中间件 Y.200–Y.299 网络方面 Y.300–Y.399 接口和协议 Y.400–Y.499 编号、寻址和命名 Y.500–Y.599 操作、管理和维护 Y.600–Y.699 安全 Y.700–Y.799 性能 Y.800–Y.899 互联网协议方面 概述 Y.1000–Y.1099 服务和应用 Y.1100–Y.1199 体系架构、接入、网络能力和资源管理 Y.1200–Y.1299 传输 Y.1300–Y.1399 互通 Y.1400–Y.1499 服务质量和网络性能 Y.1500–Y.1599 信令Y.1600–Y.1699 操作、管理和维护 Y.1700–Y.1799 计费 Y.1800–Y.1899 NGN 上的 IPTV Y.1900–Y.1999 下一代网络 框架和功能结构模型 Y.2000–Y.2099 服务质量和性能 Y.2100–Y.2199 服务方面:服务能力和服务结构 Y.2200–Y.2249 服务方面:NGN 中服务和网络的互操作性 Y.2250–Y.2299 NGN 的增强 Y.2300–Y.2399 网络管理 Y.2400–Y.2499 计算能力网络 Y.2500–Y.2599 基于分组的网络 Y.2600–Y.2699 安全性 Y.2700–Y.2799 通用移动性Y.2800–Y.2899 运营商级开放环境 Y.2900–Y.2999 未来网络 Y.3000–Y.3499 云计算 Y.3500–Y.3599 大数据 Y.3600–Y.3799 量子密钥分发网络 Y.3800–Y.3999 物联网和智慧城市及社区 总则 Y.4000–Y.4049 定义和术语 Y.4050–Y.4099 要求和使用案例 Y.4100–Y.4249 基础设施、连接和网络 Y.4250–Y.4399 框架、架构和协议 Y.4400–Y.4549 服务、应用、计算和数据处理 Y.4550–Y.4699 管理、控制和性能 Y.4700–Y.4799 识别和安全 Y.4800–Y.4899 评估和评定 Y.4900–Y.4999
摘要 — 未来,移动用例将依赖于精确的预测,服务质量 (QoS) 预测就是一个突出的例子。本文介绍了当今车辆的实际测量结果,以支持未来强大的 QoS 预测。基于专门的受控测量活动,我们重点介绍了影响收集的数据集的无线环境和设备特性(如采样率)的各个方面。如果处理不当,这些特性可能会妨碍基于人工智能的 QoS 预测算法的性能。因此,我们还提供了有关数据集特征的见解,应进一步利用这些见解来更轻松地采用基于 AI 的算法。新的基于 AI 的算法应该能够在非常多样化的无线电环境中运行,并从不同设备捕获数据。我们提供了一些示例,强调了彻底了解数据集及其动态的重要性。