QED是一种集成的边缘设备,具有多个软件层(驱动程序,操作系统,嵌入式去耦,最终用户应用程序),能够通过在集成的OS上运行的Edge应用程序虚拟化电气设备(防护继电器,RTU,RTU,PMUS,电表浓度,路由器,调制件,调制件等)。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
维生素 E 是一种脂溶性抗氧化剂,在维持鱼类健康和福祉方面起着至关重要的作用。本综述探讨了维生素 E 对鱼类的多方面益处,重点介绍了其在促进生长、增强免疫系统和改善肉质方面的作用。维生素 E 是一种强效抗氧化剂,可保护细胞和组织免受活性氧 (ROS) 引起的氧化损伤。通过中和这些有害的自由基,维生素 E 有助于维持细胞完整性并预防氧化应激引起的疾病。维生素 E 在鱼类中的促生长特性归因于其参与各种生理过程。首先,它增强了营养的吸收和利用,从而提高了饲料转化效率和总体增长率。其次,维生素 E 支持蛋白质、脂质和核酸的生物合成,这些是组织生长和修复的关键成分。此外,据观察,补充维生素 E 对骨骼结构的发育有积极影响,并促进肌肉生长,从而改善肉质。除了促进生长外,维生素 E 在增强鱼类的免疫系统方面也起着关键作用。它通过增强免疫细胞(如淋巴细胞和吞噬细胞)的产生和活性来增强鱼的防御机制。此外,维生素 E 可增强抗体反应、提高疫苗效力并降低感染疾病的易感性。通过减少炎症和调节免疫反应,维生素 E 有助于保持鱼的最佳健康和抗病能力。鱼肉的质量是水产养殖和海鲜业的关键因素。维生素 E 补充剂已被证明可以提高鱼肉的感官属性和营养价值。它可以抑制脂质氧化,从而保持新鲜度并防止储存鱼产生异味。此外,维生素 E 可以改善鱼肉的质地、颜色和多汁性,提高其市场价值和消费者接受度。
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
简介 — 自旋玻璃是统计物理学中的一个重要范式。除了它们在描述无序经典磁体方面的相关性 [1,2] 之外,研究还表明,优化任务(例如旅行商问题)可以映射到求解自旋玻璃系统的基态 [1,3,4] 。通过引入横向场,可以将经典自旋玻璃提升为量子模型。由此产生的量子自旋玻璃本身就构成了研究无序和挫折与量子效应相互作用的重要场所 [5] 。此外,有证据表明,可以利用量子性来简化优化任务,例如通过量子退火 [6 – 10] 。量子自旋玻璃模型的教科书例子是量子 Sherrington-Kirkpatrick (QSK) 模型,它是经典 Sherrington-Kirkpatrick (SK) 模型的推广 [11,12] 。QSK 模型已在文献中得到了广泛的分析研究 [12 – 18] 和数值研究 [19 – 30] 。虽然著名的 Parisi 解 [31,32] 为经典 SK 模型提供了完整的解,但量子 SK 模型仍有许多悬而未决的问题。
我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。
几何模型拟合是一个具有挑战性但又十分基础的计算机视觉问题。最近,量子优化已被证明可以增强单模型情况的稳健拟合,同时多模型拟合的问题仍未得到解决。为了应对这一挑战,本文表明后一种情况可以从量子硬件中显著受益,并提出了第一种多模型拟合 (MMF) 的量子方法。我们将 MMF 表述为一个问题,现代绝热量子计算机可以对其进行有效采样,而无需放宽目标函数。我们还提出了一种迭代和分解版本的方法,该方法支持真实世界大小的问题。实验评估在各种数据集上都显示出有希望的结果。源代码可在以下位置获得:https://github.com/FarinaMatteo/qmmf 。
缓解,这意味着试验的随机化被打破。EAG进行了幼稚的ML-NMR比较,该比较表明,在公司的ML-NMR中应用的人口调整比Midostaurin相比,尤其是在累积的Rellapse分析中。委员会指出,两种间接治疗比较的大多数结果均未显示Quizartinib比Midostaurin的统计学显着改善,除了MAIC结果是复发的累积发生率。一位临床专家说,通常很难解释总体生存结果,因为有很多因素需要考虑。他们说复发率是最重要的结果。他们补充说,与Midostaurin相比,Quizartinib的复发速率可能较低,因为它是针对FLT3-ITD突变的。委员会得出的结论是,两种间接治疗比较的结果都高度不确定。但它