抗凋亡 B 细胞淋巴瘤-2 (Bcl-2) 家族成员是细胞凋亡内在途径的顶端调节器,通过与促凋亡对应物相互作用来协调线粒体外膜通透化 (MOMP)。抗凋亡 Bcl-2 家族蛋白的过度表达与多种癌症的治疗耐药性和不良预后有关。在抗凋亡 Bcl-2 家族成员中,据报道,促生存的髓系细胞白血病-1 (Mcl-1) 在多种血液系统恶性肿瘤和实体瘤中均以过度表达为主,这导致治疗耐药性和不良预后,因此使其成为潜在的可用药靶点。Mcl-1 的独特结构及其复杂的调节机制使其成为一种自适应的促生存开关,可确保肿瘤细胞在治疗干预下存活。本综述重点介绍肿瘤细胞为维持持续升高的 Mcl-1 水平而采用的多种机制,以及高 Mcl-1 水平如何导致传统疗法和靶向疗法的耐药性。此外,我们还讨论了 Mcl-1 靶向治疗的最新发展以及设计新型 Mcl-1 抑制剂所面临的潜在挑战和考虑因素。
第 3 章 铂金的故事 221004be3.docx 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发展治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 3 章 铂金的故事:从想象到新型抗癌药。 前两章讲述了烷化剂:一种通过与 DNA 碱基(尤其是鸟嘌呤)紧密(共价)结合来损伤 DNA 的抗癌药物。令人惊讶的是,某些以铂原子为中心的分子可以以与烷化剂非常相似的方式结合和损伤 DNA,尤其是通过攻击 DNA 的鸟嘌呤。铂配合物的抗癌活性是所有抗癌药物研究中最令人惊讶和影响深远的发现之一。这一里程碑式发现的取得方式尤为引人注目。第一个被发现的、结构最简单的铂络合物是顺铂,其改良形式成为癌症化疗的主要支柱。顺铂不可能在药物筛选项目中被发现,因为它是一种无机化学物质,而所有抗癌药物研究都属于有机化学领域,而有机化学是基于碳原子的。顺铂完全由重金属铂原子、2 个氯原子、2 个氮原子和几个氢原子组成;其中没有一个碳原子(图 3.1)。它也不会通过搜索动物、植物、真菌或微生物制成的天然产物而被发现,因为在任何天然生物系统中都没有发现铂。即使重金属络合物已经过抗癌活性筛选,顺铂也很容易被忽略,因为原子及其结构必须恰到好处。例如,顺铂和反铂由相同的原子和键组成,唯一的区别在于两个氯原子是相邻(顺式)还是跨式
第 8 章 阿霉素的故事 220720az3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 8 章 阿霉素的故事:一颗有着致命缺陷的明星。 引言 阿霉素 (也称为阿霉素) 是一种 DNA 插入剂 (第 4 章) 和拓扑异构酶 II 阻滞剂 (第 10 章)。它成为最有用的抗癌药物之一;它被发现对许多癌症有效,虽然不能治愈。然而,它对心脏、脑、肝脏和肾脏的毒性作用阻碍了它的实用性。在这些毒性中,最严重的是损害心脏;如果所用药物的累积量超过一定限度,患者通常会死于充血性心力衰竭(Von Hoff 等人,1979 年)(图 8.1)。这种药物有时会导致癌症消失,但缓解仅持续几个月,之后肿瘤就会重新出现,然后对药物产生耐药性(Benjamin 等人,1974 年)。一些乳腺癌患者通过手术成功治愈,随后使用一段时间的阿霉素作为“辅助治疗”,但即使在 10 年后,心脏仍然受到一定程度的损伤(Murtagh 等人,2016 年)。因此,心脏损伤是不可逆的,而且可能非常严重,唯一的补救措施是移植新的心脏。对心脏的潜在致命损伤阻止了使用可能治愈癌症的更高剂量。因此,人们付出了巨大的努力来确切了解这种药物是如何损害心脏的。虽然心脏损伤的机制已经明确,但除了限制药物的用量外,没有发现其他预防措施。此外,尽管普遍认为阿霉素对拓扑异构酶 II 的作用是主要的治疗机制,但阿霉素抑制癌症的具体机制尚未完全确定。
“自然感染”这本书是由一位受过美国培训的医生辩称,流行病学家和其他医生在大流行中宣布的,Covid-19感染是一件好事(因为它会在人口中积累群群的豁免权),部分原因是在突出的医生中造成了更大的选择,而这是在此过程中更加危害,而这是不断的选择,而不仅会造成这种危害,而且不断地不在又有进一步的选择。这本书摘自2020年6月的一份声明Paul E Alexander,Paul E Alexander是在美国卫生与公共服务部工作的流行病学教授。亚历山大教授在谈论儿童和青少年。当时接受了智慧(疫苗可用的几个月),是年轻的患者感染了SARS-COV-2,疾病温和的疾病和并发症的风险较低。因此,他认为,保护老年人和脆弱的关键策略可能是确保所有或最健康的儿童和年轻人都遇到了Covid-19作为自然感染。
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
第五章 甲氨蝶呤的故事 220719dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第五章 甲氨蝶呤的故事:叶酸类似物。 发现甲氨蝶呤作为抗白血病药物 二十世纪四十年代的急性白血病病情凶猛且致命,甚至没有办法减缓病情。这种可怕的疾病通常发生在儿童身上,是由异常白细胞不受控制地生长引起的:它们在骨髓中过度生长,阻碍了骨髓中正常的血细胞生成。结果导致红细胞消耗,从而导致贫血,抵抗感染所需的正常白细胞缺乏,以及防止出血所需的血小板减少。 1948 年 6 月,就在 Goodman、Gilman 及其同事报告氮芥具有淋巴瘤肿瘤溶解作用(Goodman 等人,1946 年)(见第 1 章)的两年后,哈佛医学院和波士顿儿童医院的 Sidney Farber 及其同事报告称,叶酸的类似物和拮抗剂氨基蝶呤能够减缓儿童白血病的进展(Farber 和 Diamond,1948 年)(图 5.1)。这是继氮芥之后加速癌症化疗时代的第二次突破。虽然它不是治愈方法,但它确实为治愈奠定了基础。氨基蝶呤是一种化学修饰的叶酸,已知可以抑制叶酸的作用。这种抑制会损害 DNA 和 RNA 合成构件的生产。因此,该药物会损害细胞生长和分裂的能力。
随着对光和物质波场的量子性质的研究取得最新进展,量子工程这一新领域应运而生。量子工程为量子计量学测试基本物理定律开辟了新视野,在空间和时间测量方面达到了前所未有的精度水平。相关的新型量子技术催生了原子钟和传感器,可在全球大地测量、惯性传感、导航和激光测距中得到广泛应用。德国联邦物理技术研究院 (PTB) 一直致力于开发超越最先进水平的精密测量技术。多年来,PTB 与汉诺威莱布尼茨大学 (LUH) 一直有着出色的合作伙伴,尤其是数学、物理和大地测量学院的研究所,以及马克斯普朗克引力物理研究所 (Albert Einstein Institute, AEI),这些研究所在量子工程和密切相关领域开展着顶级研究。此外,与汉诺威激光中心 (LZH) 和不来梅大学应用空间技术和微重力中心 (ZARM) 的密切合作已被证明是卓有成效的。这个强大的社区是最终导致建立 QUEST(量子工程和时空研究中心)的先决条件,该中心是汉诺威莱布尼茨大学的卓越中心。因此,QUEST 汇集了这些合作伙伴的杰出专业知识,以在汉诺威-布伦瑞克地区共享知识并提高该地区的实力。该集群的核心思想是将量子工程、量子传感器、时空和使能技术这四个主要研究领域联系起来,并建立有前景的研究活动,特别是在这些领域的交界处。因此,PTB、LUH、AEI、LZH 和 ZARM 之间的未来合作将通过各种 QUEST 措施得到系统加强,例如通过在 PTB 校园内建立联合教授职位和研究小组。在本出版物中,读者将获得 QUEST 合作伙伴的概述以及 PTB 正在进行和计划中的 QUEST 相关研究活动。我们希望 PTB 的新 QUEST 研究所能够不负众望,为量子工程和时空研究的科学技术做出领先贡献。我们希望您喜欢阅读本期内容。
随着对光和物质波场的量子性质的研究取得最新进展,量子工程这一新领域应运而生。量子工程为量子计量学测试基本物理定律开辟了新视野,在空间和时间测量方面达到了前所未有的精度水平。相关的新型量子技术催生了原子钟和传感器,可在全球大地测量、惯性传感、导航和激光测距中得到广泛应用。德国联邦物理技术研究院 (PTB) 一直致力于开发超越最先进水平的精密测量技术。多年来,PTB 与汉诺威莱布尼茨大学 (LUH) 一直有着出色的合作伙伴,尤其是数学、物理和大地测量学院的研究所,以及马克斯普朗克引力物理研究所 (Albert Einstein Institute, AEI),这些研究所在量子工程和密切相关领域开展着顶级研究。此外,与汉诺威激光中心 (LZH) 和不来梅大学应用空间技术和微重力中心 (ZARM) 的密切合作已被证明是卓有成效的。这个强大的社区是最终导致建立 QUEST(量子工程和时空研究中心)的先决条件,该中心是汉诺威莱布尼茨大学的卓越中心。因此,QUEST 汇集了这些合作伙伴的杰出专业知识,以在汉诺威-布伦瑞克地区共享知识并提高该地区的实力。该集群的核心思想是将量子工程、量子传感器、时空和使能技术这四个主要研究领域联系起来,并建立有前景的研究活动,特别是在这些领域的交界处。因此,PTB、LUH、AEI、LZH 和 ZARM 之间的未来合作将通过各种 QUEST 措施得到系统加强,例如通过在 PTB 校园内建立联合教授职位和研究小组。在本出版物中,读者将获得 QUEST 合作伙伴的概述以及 PTB 正在进行和计划中的 QUEST 相关研究活动。我们希望 PTB 的新 QUEST 研究所能够不负众望,为量子工程和时空研究的科学技术做出领先贡献。我们希望您喜欢阅读本期内容。
• 支持所有研究人员的平台和服务 • 计算(Quest、基因组学计算集群) • 数据管理(存储、安全、工作流) • 数据科学、统计和可视化