联盟计划将其下一代高速遥测与MWD Supply现有的“ X-Tool”产品线相结合。模块化升级将为现有的X-Tool平台提供175°C高扭矩和高螺旋的EM选项。此外,量子将提供MWD供应中185°C“热洞”产品线的升级,以满足 +175°C子集中对井的不断增长的需求。作为交易结构的一部分,MWD Supply的首席执行官Jim Chambers II将加入新实体的董事会,而Jim Bush将担任董事长兼首席执行官。
图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
EuroQCI 将利用创新的量子通信技术,例如由欧盟资助的量子技术旗舰计划的研究人员开发的技术,并特别以 Horizon 2020 OPENQKD 项目的活动为基础。欧洲行业合作伙伴和中小企业的参与对于确保 EuroQCI 的关键组件基于欧洲技术也至关重要,并最终提升欧洲在网络安全和量子技术方面的科学、技术和工业能力。因此,该计划将有助于欧洲的数字主权和工业竞争力,并有助于实现欧洲数字十年的目标,即到 2030 年在量子能力方面处于领先地位。
本书提供了一本通俗易懂、引人入胜的量子密码学入门书,读者无需具备任何量子计算方面的知识。书中介绍了基本的背景理论和数学技术,并将其应用于量子密码协议的分析和设计。本书探讨了几个重要的应用,如量子密钥分发、量子货币和委托量子计算,同时也是一本完整的量子计算领域的入门书。本书有大量与量子密码学相关的插图和简单示例,侧重于培养直觉,并挑战读者理解密码安全的基础。书中的示例和章节中间的练习可以帮助读者扩展理解,课文测验、章末家庭作业问题和推荐的进一步阅读材料可以巩固和拓宽理解。教师可以使用的在线资源包括 Julia 中的交互式计算问题、视频、讲座幻灯片和完整的解决方案手册。
在不断发展的技术格局中,第二代量子技术的出现是一次巨大的飞跃。一方面,这些进步不仅仅是渐进式的改进;它们代表着一种范式转变,有望重塑行业、催生新行业,并重新定义我们认为可能的界限。从超安全通信网络到强大的量子计算机,这些技术有可能解决曾经被认为无法解决的问题,并解答困扰人类多年的问题。另一方面,我们目前仍处于所谓的 NISQ 时代。在这个时代,量子设备的使用非常有限,而这些设备的功能远远落后于人们对未来几十年的预期。
人类语言最引人注目的特征之一是它们的极端变化。更加惊人的是,在统治其形式和功能的强烈代表性和认知规律的明显变化背后的存在:语言普遍性。我们在这里讨论我们小组的一些最新工作,其中大规模,数据密集型计算建模技术用于解决有关语言规律性的基本语言问题。在单词顺序区域中,我们在此处报告工作,这些工作利用大量单语和平行语料库数据来开发名词短语(通用20)和一般结构最小化原则的内部结构的计算模型。在事件持续时间的领域,我们报告的工作利用了深厚的相似性和表面差异来开发真正的跨语言自然语言处理工具。
目标基于量子原理的信息技术和电信现在正走在技术进步的道路上。量子计算机和测试网络正在世界各地普及。2016年,欧盟启动了一项获得竞争优势的计划。该计划每年都在显着增长,无论是内容还是资金方面。如今,越来越多的跨国公司正在聘请专家为量子飞跃做准备,而世界各地正在创建越来越多的初创企业。量子信息学二级专业的主要目标是培养具有国际视野的创意工程师,他们对该领域有深入的了解,对国内公司和企业的量子技术的原理和实际应用有很好的理解。为此,我们将采用工程方法来回顾支撑该领域的物理原理和操作规则。介绍了量子计算机的硬件解决方案和主要的量子编程语言。将回顾主要算法和应用领域(数据处理、优化等)。与传统计算一样,量子计算可以联网以实现质的进步,选择此专业的学生将学习光纤和卫星量子通信系统,特别关注基于量子原理的密码学,以及量子计算机的互连。除了讲座之外,学生还将学习设计和分析练习。在该专业的实验课上,学生将获得编程量子计算机的经验,这些计算机具有远程访问和在家庭量子网络上进行测试。
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。