摘要摘要,以疾病改良的药物在地平线上进行性行为性共济失调,生态有效,细粒度,数字健康指标非常有必要增加临床和患者报告的结果指标。步态和平衡干扰最常作为退化性小脑共济失调的第一个迹象,并且是疾病进展中据报最多的残疾特征。因此,数字步态和平衡度量构成了临床试验的有希望的和相关的绩效结果。这次叙述性综述和嵌入式共识将描述数字步态和平衡测量值的敏感性的证据,以评估共济失调的严重程度和进展,提出了一种共识方案,用于在自然史研究和临床试验中建立步态和平衡指标,并讨论将其用作绩效结果的相关问题。
○探针 - 固定器组合RSA-SHA256(由于噪声)的响应不正确(由于噪声)○私有IP范围中的解析器(由于TCP的成熟地图集限制)○超时和网络错误
摘要:与啮齿类动物的丰富环境不同,人类建造的环境通常会通过久坐的生活方式阻碍神经可塑性,损害认知和心理健康。本文引入了“身体活动的环境可供性”,以量化空间布局设计刺激活动和维持神经可塑性(主要是海马神经发生)的潜力。一个新颖的框架将城市和建筑变化的代谢当量 (MET) 与脑源性神经营养因子 (BDNF) 联系起来,后者是一种促进和维持成人海马神经发生和长期增强 (LTP) 的生物标志物。通过短暂暴露于建筑环境 20-35 分钟后可测量的 BDNF 变化,开发了方程式来评估神经可持续性潜力,因为有证据表明,通过低强度到中等强度的身体活动可以引起 BDNF 释放。该模型提供了一种可行的评估工具,将设计和神经科学连接起来。通过维持神经发生,环境对身体活动的承受能力有望通过海马神经发生的可持续性来改善心理健康并防止认知能力下降。
圈量子引力 (LQG) 的基本构成要素是自旋网络,它用于量化 LQG 中的物理时空。最近,利用自旋网络的基本概念提出了新的量子自旋。这一观点重新定义了量子自旋的概念,并引入了约化普朗克常数的新定义。这一观点的含义不仅限于量子引力,还可用于量子力学。利用这一观点,我们提出了对心灵时空的量化。物理时空与心灵时空之间的相似性为从科学和哲学角度研究时空提供了新概念。本文还对物理时空与心灵时空进行了比较研究。
量子异常霍尔效应在凝结物理和计量学中具有颠覆性创新,因为它可以根据von-klitzing常数r k = h/e 2在零外部磁场上访问霍尔电阻量化。在这项工作中,我们研究了基于磁性拓扑绝缘体材料(V,BI,SB)2 TE 3的设备中霍尔电阻量化的准确性。We show that the relative deviation of the Hall resistance from R K at zero external magnetic field is (4.4 ± 8.7) nΩ/Ω when extrapolated to zero measurement current, and (8.6 ± 6.7) nΩ/Ω when extrapolated to zero longitudinal resistivity (each with combined standard uncertainty, k = 1), which sets a new benchmark for the quantization accuracy in topological matter.在NΩ/ω水平(或相对不确定性的10 -9)处的这种精度和准确性达到了相关的计量应用的阈值,并建立了零外部磁场量子量子标准电阻标准 - 朝着将量子基于量子的电压和电阻整合到单个通用电气电气电气中的重要步骤。
过去二十年来目睹了对Van-der-Waals(VDW)材料的研究爆炸,这是一类广泛的固体,在该固体中,平面晶体板由VDW部队粘合在一起。通常,这些材料只能将其稀释为几个原子层,甚至可以将其变成单个原子纸,从而意识到其传统散装形式的二维(2D)变体。由于在2000年代初期的单层(1L)的第一次驱动器以来,已经将各种VDW材料隔离并以2D极限进行了隔离和研究,包括金属,宽间隙绝缘子,半导体,半导体,半金属,超级导管,磁性材料,磁性材料,以及更多。[1]中,在这些半金属中,例如石墨烯和2D半导管,通常由VI组VI过渡金属二甲硅烷基(TMDC)代表,在基本凝聚的物理学以及在电子,电子,光电电子技术中以及在基本凝聚的物理学方面创造了令人兴奋的新机会。[2-4]由于光学相互作用和频段结构发生了巨大变化,在从几层到1L极限的过渡中可能发生,因此在2D Light-Matter相互作用和超级超平均光电设备中证明了2D半导体和半米的独特机会。这值得探索其光诱导的物理学,从而导致新型量子现象。2D材料的关键特性之一是增强的电子 - 电子库仑相互作用,其介电筛选和低维度引起。这些相互作用不仅强烈修改平衡频带结构,而且更改了(照片)激发的带构结构。[5],例如,强烈结合的激子[6](由绑定的电子和孔组成),即使在室温下,也要赋予2D半导体的光学响应。这些摘录显示出各种各样的物种,具有不同的自旋,[7] Monma,[8]和电荷[9]影响其光 - 肌电相互作用的频谱,动力学和应用。2D材料的另一个属性是它们能够将其堆放到其他2D材料和基板上,几乎没有约束。[10]这些结构中的层间相互作用促进了一种独特的手段,用于设计异质结构属性和功能,而不是组成材料的材料。[11,12]这些属性包括动量依赖性层
数字时代的数学教育(MEDE)系列探讨了数字技术支持数学教学和网络Geners学习的方式,也关注教育辩论。每卷都将在数学教育中解决一个特定问题(例如,视觉数学和网络学习;基于包容性和社区的电子学习;在数字时代的教学),以探索在数字技术的情况下探索有关教学和学习数学的基本假设。本系列旨在吸引各种各样的读者,包括:数学教育研究人员,数学家,认知科学家和计算机科学家,教育研究生,政策制定者,教育软件开发人员,管理人员和教师实践者。除其他外,本系列发表的高质量科学工作将解决与新一代数学学生的教学法和数字技术适用性有关的问题。该系列还将为读者提供更深入的了解,以了解创新的教学实践如何出现,进入课堂,并塑造成长为技术的年轻学生的学习。该系列还将介绍如何桥接理论和实践,以增强当今学生的不同学习方式,并将他们的动力和自然兴趣转变为对有意义的数学学习的额外支持。该系列为发现数字技术对学习成果的影响及其整合到有效的教学实践中的影响提供了机会;数学教育软件在教学和课程转换方面的潜力;以及数学电子学习的力量,是包容性和基于社区的,但个性化和实践的力量。