量子理论在物理学中仍属新领域,新发现不断涌现。该理论认为原子和亚原子宇宙由量子(单个粒子)组成。量子理论与传统的连续介质物理学共存,后者假设渐进的差异以二分法的方式进行解释,类似于心理学中的诊断。量子化宇宙的结果对于理解生命、确定亚原子层面上生物体内发生的事情以及这如何影响意识和行为具有启示意义。关于量子方面与意识之间关系的确凿证据已经出现。然而,目前将量子物理学的理论见解推广到现实世界的行为(特别是心理科学)的理论仍然是推测性的和有争议的。我认为心理学家需要具备量子力学的基本知识,并熟悉量子术语及其含义。越来越多的意识理论描述了量子对思维和行为的可能影响,这表明它在精神病理学中发挥了作用。任何提议的“量子治疗”在临床使用之前都需要进一步的严格评估。
扫描电子显微镜(SEM)图像是在5-10 kV下操作的FEI量子450上获得的。UV-VIS吸收光谱。在Maya2000 Pro CCD光谱仪上记录了发射光谱。对于光学波导文本,晶体被A nd:yag(Yttrium-Aluminum-garnet)激光的第三个谐波(355 nm)以10 Hz的重复速率和脉冲持续时间约为10 ns。使用校准的中性密度过滤器调整激光的能量。通过使用圆柱形透镜和缝隙,将梁集中在条纹上,其形状被调整为3.3×0.6 mm。在Maya2000 Pro CCD光谱仪上记录了边缘发射光谱。所有合成材料的所有溶剂和起始材料都是从商业来源购买的,并在没有进一步纯化的情况下被收到。poly(二甲基二甲基铵氯化物)(PDDA,MW。200000–350000),聚(苯乙烯钠钠)(PSS,MW。70000)。PDDA和PSS水溶液的浓度为1.0 mg/ml。
2一般TGD关于超导性的观点10 2.1超导性的基本现象学。。。。。。。。。。。。。。。。。。。。。10 2.1.1超导性的基本现象学。。。。。。。。。。。。。。。。。。10 2.1.2普遍性超级导体的基本参数?。。。。。。。。。。。10 2.2 TGD框架中参数的通用性。。。。。。。。。。。。。。。。。12 2.2.1 P-ADIC缩放对超导体参数的影响。。。。。13 2.3量子关键性和超导性。。。。。。。。。。。。。。。。。。。。。14 2.3.1超导体的量子临界与TGD量子临界有之间的关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.3.2扩大量子重叠的de broglie波长和标准。。15 2.3.3 TGD框架中的量子临界超导体。。。。。。。。。。。。15 2.3.4量子关键性可以使新型高T C超导体可能成为可能吗?16 2.4时空描述苏斯传统的机制。。。。。。。。。17 2.4.1主要问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.4.2光子量,库珀对的相干状态和虫洞接触18 2.4.3时空相关,以量子关键超导性。。。。。。。。。19 2.5在磁通管处的超导性。。。。。。。。。。。。。。。。。。。。。19 2.5.1地球磁场的量子的超导体。。。。。。20 2.5.2超导磁性磁管和壁的能量差距。。。。。。。20
2一般TGD关于超导性的观点9 2.1超导性的基本现象学。。。。。。。。。。。。。。。。。。。。。9 2.1.1超导性的基本现象学。。。。。。。。。。。。。。。。。。9 2.1.2普遍性超级导体的基本参数?。。。。。。。。。。。10 2.2 TGD框架中参数的通用性。。。。。。。。。。。。。。。。。12 2.2.1 P-ADIC缩放对超导体参数的影响。。。。。12 2.3量子关键性和超导性。。。。。。。。。。。。。。。。。。。。。14 2.3.1超导体的量子临界与TGD量子临界有之间的关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.3.2扩大量子重叠的de broglie波长和标准。。15 2.3.3 TGD框架中的量子临界超导体。。。。。。。。。。。。15 2.3.4量子关键性可以使新型高T C超导体可能成为可能吗?16 2.4时空描述苏斯传统的机制。。。。。。。。。16 2.4.1主要问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.4.2光子量,库珀对的相干状态和虫洞接触18 2.4.3时空相关,以量子关键超导性。。。。。。。。。18 2.5在磁通管处的超导性。。。。。。。。。。。。。。。。。。。。。19 2.5.1地球磁场的量子的超导体。。。。。。19 2.5.2超导磁通管和壁的能量差距。。。。。。。20
美国总统大选是本季度的重大事件。唐纳德·特朗普赢得了明确的执政授权,共和党在参议院和众议院获得多数票。这导致市场出现分化,在特朗普执政期间,美国经济更强劲、税收更低,而潜在关税的影响则威胁到包括中国和欧洲在内的世界其他地区的经济增长。美联储 12 月中旬会议宣布 2025 年可能降息两次,而市场预期为降息四次,市场收盘疲软。本季度业绩的主要贡献者是电气设备和劳动力供应商 GE Vernova、Comfort Systems(见第 5 页的股票故事)和 Quanta Services(见第 6 页的股票故事)。这些股票的主要驱动因素来自与人工智能 (AI) 所需的数据中心容量建设相关的电力需求不断增长、对特朗普 2.0 的关注度增加以及推动回流。影响业绩的主要拖累因素是 Constellation Energy,该公司股价下跌,原因是监管机构阻止了同行 Talen Energy 向亚马逊数据中心供应核电的交易。我们预计,特朗普上任后,这一监管路径将会清晰,因为我们最终预计新政府将支持核能行业以及数据中心建设,以确保美国保持其在技术领域的领先地位。其他拖累因素包括工业气体公司 Linde,由于其部分终端市场的前景较弱,该公司的业绩可能会有所放缓。
正电子是一个合适的Leptonic系统,用于测试电荷 - 比值(CP)离散对称性,涉及来自正质稳定(O-PS)灭绝的光子矩相关的相关性。由于真空极化而导致的最终状态中的光子 - 光子相互作用可能模仿CP对称违反10-9的顺序,而根据标准模型预测,弱相互作用效应导致违反10-14的顺序。到目前为止,O-PS衰减中CP对称违规的实验限制设置为10-4的水平。J-PET检测器的独特特征之一是它可以在没有磁场的情况下测量an灭光子的极化方向。J-PET检测器可通过寻找可能的非零期望值值来探索离散的对称性,该对称性ODD操作员是由Ortho-positronium and Mommentum和Mommentum的旋转以及γ(γ)量子的极化向量构建的,这是由O-PS ennihilation产生的。In this work, the J-PET de- tector experimental and analysis method to improve the sensitivity level at least by one order for CP discrete symmetry studies in the o-Ps decay via symmetry odd operator ( ⃗ϵ i · ⃗ k j ) , where ⃗ϵ i and ⃗ k j are reconstructed polariza- tion and momentum vectors of photons from the o-Ps decays, respectively, will be presented.
我的研究领域是量子复杂性理论,特别是量子态间变换的复杂性。这些操作是经典计算机根本无法执行的,因为输入和/或输出可能是许多不同位串的叠加。相比之下,传统的量子复杂性理论家研究的是量子计算机上计算布尔函数(一种特殊的量子态间变换)所需的资源与经典计算机上计算布尔函数所需的资源的比较。以下是一些激励示例。费曼 [Fey82] 提出量子计算机想法的最初动力是为了模拟物理系统的汉密尔顿演化。吉布斯状态准备 [Con+23] 的目标是输出此类系统在给定温度下的平衡状态。量子输入态可能直接来自自然界,而不是人为生成的数据,例如量子态断层扫描 [BCG13] 或解码黑洞的霍金辐射 [HH13]。最近的一项研究 [ Kre21 ; LMW24 ; BHHP24 ; MH24 ](在 Quanta Magazine [ Bru24 ] 中进行了调查)表明,有可能将密码学建立在量子态之间的转换基础上,而不依赖于传统密码学对布尔函数的假设。即使最终目标是计算布尔函数,常用的量子算法子程序也包括状态转换,如幺正的线性组合 (LCU) [ BCK15 ; CW12 ] 和量子纠错 [ LB13 ]。传统上,量子态转换的研究都是临时性的;我的博士论文 [ Ros23 ] 和其他作者的近期著作 [ Aar16 ; BEMPQY23 ] 是最先为这类问题提出统一复杂性理论的论文之一。下面我将讨论我在这个主题内的几个研究方向。引用我自己的论文的引文以粗体字表示。
本介绍性文章将早期半导体检测器向现代RA Diation Imaging Instruments的演变(现在具有数百万个信号处理细胞)的发展方面,利用了硅纳米技术的潜力。MEDIPIX和TIMEPIX组件是此演变中的主要移动器之一。可以使用单个电离粒子和光子检测矩阵中检测矩阵中的影响来研究这些基本量子本身,或者允许人们可视化辐射下对象的各种特征。x-射线成像可能是后者最常用的模态,新成像器可以处理每个事件x - 光子以获取具有有关对象的结构和组成的其他信息的图像。可以利用能量特异性X射线吸收来成像原子分布。出现了无数其他应用程序。为例,在分子光谱学中,每个像素中的亚纳秒时序可以实时传递,以单分子的飞行时间来实时映射样品的分子组成,与经典的凝胶电泳相比,革命是革命。参考文献和一些个人印象可在超过50年的时间内照亮辐射检测和成像。推断和对未来发展的狂野猜测总结了这篇文章。
1 新加坡科技研究局(A*STAR)微电子研究所,新加坡 117685 2 巴黎大学材料与现象实验室,法国巴黎 F-75013 3 南洋理工大学电气与电子工程学院,新加坡 639798 在本研究中,我们报告了一种铜填充硅通孔 (TSV) 集成离子阱的设计、制造和操作。TSV 被直接放置在电极下方,作为离子阱和玻璃中介层之间的垂直互连,随着电极数量的增加和复杂性的提高,可实现任意几何设计。TSV 的集成将离子阱的形状因子降低了 80% 以上,将寄生电容从 32±2 pF 最小化到 3±0.2 pF。尽管没有接地屏蔽层,但仍实现了低射频耗散。整个制造过程在 12 英寸晶圆上进行,并与成熟的 CMOS 后端工艺兼容。我们通过加载和激光冷却单个 88 Sr + 离子展示了该阱的基本功能。我们发现,加热速率(轴向频率为 300 kHz 时为 17 量子/毫秒)和寿命(约 30 分钟)与类似尺寸的阱相当。这项工作开创了 TSV 集成离子阱的发展,丰富了可扩展量子计算的工具箱。
光线互动在我们的日常生活中非常重要,因为他们对我们如何看待周围的世界负责。他们还负责为什么天空是蓝色的,以及为什么在太阳下方会感到温暖。轻度 - 物质相互作用是指光颗粒与材料原子中存在的电子相互作用的过程。与我们在通常的生活中观察到的相互作用类型不同,例如球碰撞,轻度互动是一种纯粹的量子机械现象。这是由于能源离散的结果,即量子力学中的能量水平。可以通过想象一个我们用大理石填充的空罐子来理解这一点。在这种情况下,每个大理石代表一个能量的一个单位,一个量子。去除或添加大理石到罐子中等同于从/向我们的粒子中添加或添加能量。在20世纪中叶,发现光颗粒(光子)与这些量子的能量相对应。通常,光 - 摩擦相互作用涉及通过两个过程在光子和电子之间的能量交换:吸收和发射。通过吸收光子,当电子转变为较高的能级(向罐子中添加大理石)时,就会发生吸收,而发射涉及电子返回到较低的能级(从罐子中去除大理石)并以光子的形式释放其能量。这些过程导致光耦合。