联合国教科文组织宣布庆祝量子科学和技术的2025年。我们很高兴发布此问题,编辑委员会已经开始了很长时间的准备工作,以便完全发表声明。法国在量子科学方面拥有丰富而丰富的经验,并迅速将自己强加于该领域的最前沿的国家。随着时间的流逝,重要的努力在这个战略部门中进行了,他们今天有了成果:研究和企业的结构得到了加强,网络结构化,部署了合适的培训,并出现了COM -MUNS实验室。我们想要通过这些页面突出显示的所有dy-sig。我们在这个关于量子通信的第一个特殊文件中揭示了照片的核心角色。量子密钥的纠缠和分布是变化范围的核心,尤其是保证通信的安全性。这意味着从量子和检测到量子所吸收的光子到通信网络上的密钥的分布,都面临整个链中的主要挑战。您可以看到,这些领域的专家动员了参与此问题。 我热烈感谢他们您可以看到,这些领域的专家动员了参与此问题。我热烈感谢他们
摘要:具有Kagome网络的金属间化合物具有有助于获得特定的结构特征,该特征有助于获得特定的物理特性,例如量子关键性,负载密度波,超导性,超导性,磁性磁性...然而,凝聚态物理学家对这些特性的研究和理解需要一方面,并且在其他手中,以及其他构成的构图,并在其他手中进行了构图。这两个点仍然是扎实的化学家可以带来所有专业知识的主要问题。在这种情况下,将阐明有关合成,结晶生长和与Kagome网络的金属间化合物的多尺度表征的主题。该受试者的第一部分将专门用于三元和第四纪金属间化合物的深度合成和研究,其kagome网络由金属3 d或金属4 f形成。第二部分将通过使用各种生长技术来关注其中一些化合物的晶体生长。合成,格式和结构,化学和磁研究将使用实验室中的设备进行,并补充使用大型仪器。国家和/或国际合作将被设想出来某些特定属性或使用非常具体条件的表征。论文将于2025年10月开始3年。候选人将拥有化学和/或物理材料的硕士学位或工程文凭。晶体学和/或磁分析的技能将是一种资产。
实习标题:研究用于电子显微镜的基于里德堡原子电离的脉冲电子源摘要通过将(专利)单能电子源与高性能探测器相结合,我们正在与 ISMO 和 SPEC 实验室合作建造一种独特的电子显微镜,该显微镜能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)显微镜结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了生产第一个原型,我们必须在实习期间展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力性质,并成功逐像素获取能量谱。因此,实习将包括使用快速多像素探测器(~1ns)通过飞行时间来分析产生的电子源。将测试各种来源:要么直接光电离铯原子射流,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一个重要组成部分,可以作为论文继续进行。通过将(专利)单能电子源与高性能探测器相结合,我们与 ISMO 和 SPEC 实验室合作,建造了一种独特的电子显微镜,能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了实现第一个原型,我们必须在此阶段展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力学特性,并成功逐像素获取能量谱。因此,该阶段将使用快速(~1ns)多像素探测器通过飞行时间来分析产生的电子源。将测试各种光源:要么直接光电离铯原子束,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一部分,并可在攻读博士学位时继续进行