自旋轨道扭矩对于控制自旋装置至关重要。旋转厅效应在内存和振荡器设备中发现了广泛的应用,从而实现了磁化开关和自动振荡。然而,自旋霍尔效应的有效性受设备的几何特性的约束,这限制了旋转电流的流量和极化方向。另一种自旋轨道耦合现象的自旋交换效果通过提高灵活性在任何所需方向上产生旋转电流来克服这些约束。这是通过将初始旋转电流的方向和极化转换为独特的二次自旋电流来实现的[1]。通过自旋交换生成平面外旋转的最新成功证明了其在垂直磁化系统中的旋转器设备中的有效性[2]。自旋交换不仅可以在具有特定带结构的材料中,而且还可以发生在中心对称材料(例如3D过渡铁磁铁)中,该材料很容易沿磁化方向产生自旋极性电流,使其非常适合自旋交换来源[3]。然而,尚未尝试使用混合电信号阻碍的3D铁磁性交换的定量分析。铁磁层的共振向相邻层提供了极化的旋转,作为自旋交换的主要自旋。具有不同有效磁化的磁性层的共振提供了不同的共振场,从而允许信号分化,如图1(b)所示。通过反旋转大厅效应(ISHE)和异常霍尔效应(AHE)或自旋交换效果,将扩散到其他层的泵送自旋电流转化为具有不同角度依赖性的电荷电流。如图1(c)所示,与PT/CO中的ISHE主导信号不同,PT/CO中的信号在COFEB/TA/COFEB中具有独特的角度依赖性,包括自旋交换效应,验证了这种现象。COFEB/TA/COFEB表现出旋转交换效果,即在Ishe&Ahe中观察到的1/3。本研究中的定量分析提供了每种自旋交换源材料的贡献。自旋交换效果的利用将导致旋转器设备的能源效率和无场操作。
高级定量技术涉及多级分析。注意分析与社会学相关问题之间的联系。这些方法的统计数学方面及其在具体社会学问题中的使用构成了本课程的一部分。基本的随机截距多级模型经过深入研究,并扩展到完全随机的模型和(跨级)相互作用,以进行线性和逻辑回归分析。此外,我们进入了多级模型的更先进的变体(跨分类设计,荟萃分析,纵向分析,...)。在多级分析的一部分之前,将往年的定量分析课程内容进行了系统化并集成在实际研究中,并应用于真实的大规模数据集。
在CDSETE/CDTE太阳能电池中引入硒已导致归因于散装缺陷的钝化的设备性能。在这项工作中,对具有不同SE浓度的一系列CDSETE/CDTE薄膜进行高分辨率的阴极发光实验,以量化SE的机理和钝化作用。我们证明了SE浓度和辐射效率之间的普遍依赖性,以及CDTE和CDSE 0.4 TE 0.6之间发光的10倍。原始的发光图被转换为SE浓度的地图,揭示了其在堆栈中的分级轮廓。我们证明了SE沿氯化镉退火处理引起的CDTE晶界的扩散并确定扩散系数,在晶界,在晶界的扩散系数是晶粒内部的八倍以上。这些结果为SE分布及其对CDSETE/CDTE太阳能电池的钝化的影响提供了微观见解。
我们研究了两个发展中国家城市的能源和运输政策对污染的影响。我们使用定量平衡模型,可选择住房,能源使用,住宅位置,运输模式和能源技术。污染来自通勤和住宅能源的使用。校准模型参数以复制两个发展中国家城市Maputo,Mozambique和Indonesia Yogyakarta的关键变量。在反事实模拟中,我们研究各种运输和能源政策如何影响均衡污染。策略可能会引起增加住宅能源使用或切换到高排放模式或位置的反弹效应。通常,对于公共交通或现代住宅能源技术的补贴,这些反弹效应往往最大。
CB1。 学生在研究领域中表现出对知识的财产和理解,该研究领域以中等教育的基础为基础,并且通常处于依靠高级教科书的同时,还包括一些涉及研究CB2领域尖端的知识的方面。 学生能够以专业的方式将自己的知识应用于他们的工作或职业,并拥有通过在学习领域内的论点和解决问题解决的能力。 CB3。 学生有能力收集和解释相关数据(通常在其研究领域),以做出判断,包括反思相关的社会,科学或道德问题。 CB5。 学生将发展具有高度自治的进一步学习所需的学习技能。 cg1。 能够通过主动,决策,创造力,关键推理解决问题,并在工业工程领域进行知识,技能和能力传达和传递知识,技能和能力。 CG3。 能够在工业技术领域设计系统,组件或过程以满足所需规范CG4的能力。 知识和应用当前立法以及工业工程领域的规格,法规和强制性标准的能力。 CG5。 对公司的概念,机构和法律框架的概念充分了解。 公司的组织和管理。 CG6。 应用公司组织的知识。CB1。学生在研究领域中表现出对知识的财产和理解,该研究领域以中等教育的基础为基础,并且通常处于依靠高级教科书的同时,还包括一些涉及研究CB2领域尖端的知识的方面。学生能够以专业的方式将自己的知识应用于他们的工作或职业,并拥有通过在学习领域内的论点和解决问题解决的能力。CB3。 学生有能力收集和解释相关数据(通常在其研究领域),以做出判断,包括反思相关的社会,科学或道德问题。 CB5。 学生将发展具有高度自治的进一步学习所需的学习技能。 cg1。 能够通过主动,决策,创造力,关键推理解决问题,并在工业工程领域进行知识,技能和能力传达和传递知识,技能和能力。 CG3。 能够在工业技术领域设计系统,组件或过程以满足所需规范CG4的能力。 知识和应用当前立法以及工业工程领域的规格,法规和强制性标准的能力。 CG5。 对公司的概念,机构和法律框架的概念充分了解。 公司的组织和管理。 CG6。 应用公司组织的知识。CB3。学生有能力收集和解释相关数据(通常在其研究领域),以做出判断,包括反思相关的社会,科学或道德问题。CB5。 学生将发展具有高度自治的进一步学习所需的学习技能。 cg1。 能够通过主动,决策,创造力,关键推理解决问题,并在工业工程领域进行知识,技能和能力传达和传递知识,技能和能力。 CG3。 能够在工业技术领域设计系统,组件或过程以满足所需规范CG4的能力。 知识和应用当前立法以及工业工程领域的规格,法规和强制性标准的能力。 CG5。 对公司的概念,机构和法律框架的概念充分了解。 公司的组织和管理。 CG6。 应用公司组织的知识。CB5。学生将发展具有高度自治的进一步学习所需的学习技能。cg1。能够通过主动,决策,创造力,关键推理解决问题,并在工业工程领域进行知识,技能和能力传达和传递知识,技能和能力。CG3。 能够在工业技术领域设计系统,组件或过程以满足所需规范CG4的能力。 知识和应用当前立法以及工业工程领域的规格,法规和强制性标准的能力。 CG5。 对公司的概念,机构和法律框架的概念充分了解。 公司的组织和管理。 CG6。 应用公司组织的知识。CG3。能够在工业技术领域设计系统,组件或过程以满足所需规范CG4的能力。知识和应用当前立法以及工业工程领域的规格,法规和强制性标准的能力。CG5。 对公司的概念,机构和法律框架的概念充分了解。 公司的组织和管理。 CG6。 应用公司组织的知识。CG5。对公司的概念,机构和法律框架的概念充分了解。公司的组织和管理。CG6。 应用公司组织的知识。CG6。应用公司组织的知识。CG8。 知识和应用质量原则和方法的能力。 CG9。 知识和应用计算和实验工具的能力来分析和量化工业工程问题。 ra1。 知识和理解:在工业领域内具有对科学,数学和工程学的基本知识和理解,以及对力学,固体和结构力学,固体和结构力学,热工程,流体力学,生产系统,电气和自动化,工业组织和电气工程的知识和理解。 ra2。 工程分析:为了确定工业领域内的工程问题,识别规格,建立不同的分辨率方法并选择最适合其解决方案的方法。 研究与创新:能够使用适当的方法进行研究并在工业工程领域做出创新贡献。 ra5。 工程应用程序:能够根据成本,质量,安全性,效率和对环境的尊重的标准,将其知识和理解应用于工业工程领域的问题,设计设备或流程。 ra6。 横向技能:在当今社会中具有必要的技能来实践工程。CG8。知识和应用质量原则和方法的能力。CG9。 知识和应用计算和实验工具的能力来分析和量化工业工程问题。 ra1。 知识和理解:在工业领域内具有对科学,数学和工程学的基本知识和理解,以及对力学,固体和结构力学,固体和结构力学,热工程,流体力学,生产系统,电气和自动化,工业组织和电气工程的知识和理解。 ra2。 工程分析:为了确定工业领域内的工程问题,识别规格,建立不同的分辨率方法并选择最适合其解决方案的方法。 研究与创新:能够使用适当的方法进行研究并在工业工程领域做出创新贡献。 ra5。 工程应用程序:能够根据成本,质量,安全性,效率和对环境的尊重的标准,将其知识和理解应用于工业工程领域的问题,设计设备或流程。 ra6。 横向技能:在当今社会中具有必要的技能来实践工程。CG9。知识和应用计算和实验工具的能力来分析和量化工业工程问题。ra1。知识和理解:在工业领域内具有对科学,数学和工程学的基本知识和理解,以及对力学,固体和结构力学,固体和结构力学,热工程,流体力学,生产系统,电气和自动化,工业组织和电气工程的知识和理解。ra2。工程分析:为了确定工业领域内的工程问题,识别规格,建立不同的分辨率方法并选择最适合其解决方案的方法。研究与创新:能够使用适当的方法进行研究并在工业工程领域做出创新贡献。ra5。工程应用程序:能够根据成本,质量,安全性,效率和对环境的尊重的标准,将其知识和理解应用于工业工程领域的问题,设计设备或流程。ra6。横向技能:在当今社会中具有必要的技能来实践工程。
摘要:粘弹性的护理止血复苏方法,例如Rotem或TEG,对于决定时间柔性的个性化凝结干预措施至关重要。国际输血指南强调患者的安全性增加和降低治疗成本。我们分析了护理提供者对Rotem的看法,以识别感知的优势和改进领域。我们进行了一项单中心,混合的定性 - 定量研究,包括访谈,然后进行在线调查。使用模板方法,我们在护理提供商对Rotem的响应中首先识别主题。后来,参与者根据在线问卷中的五点李克特量表上的六个陈述对六个陈述进行了评分。接受了七十七名参与者的采访,52名参与者完成了在线调查。通过分析用户感知,我们确定了十个主题。最常见的积极主题是“高准确性”。最常见的负面主题是“需要培训”。在在线调查中,有94%的参与者同意监控实时Rotem Temograms有助于更快地启动目标治疗,而81%的人同意重复的ROTEM培训将是有益的。麻醉护理提供者发现Rotem是准确且迅速可用于支持动态和复杂止血情况下的决策。但是,临床医生认为解释Rotem是一项复杂且认知要求的任务,需要明显的培训需求。
攻击树是对安全性决策,支持网络攻击的识别,文档和分析的流行方法。它们是许多系统工程框架的一部分,例如umlSec [1]和sysmlsec [2],并得到了工业工具(例如Isograph's Attacktree [3])的支持。攻击树(AT)是系统图的层次图,以绘制系统的潜在攻击方案,请参见图。1和2。该图顶部的根部对攻击者的目标进行了建模,该目标通过门进一步将其重新定义为子目标:AN和GATE表示,如果所有儿童攻击成功,则攻击成功;一个或门表示任何单个儿童舒服。树的叶子是基本的攻击步骤(BAS),它模型不可分割的动作,例如切线。
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准