异国情调的自由度,例如超子,暗物质和脱糊状的夸克物质,在紧凑型物体(如中子恒星)的理论模型中引起了显着的关注,如中子恒星,这些恒星具有极高的密集核心。我们的目标是在高密度环境中探索这些颗粒的形成,同时保持中子恒星的稳定性并满足中子恒星的观察性约束。我们采用相对论密度的功能方法,用于辐射阶段,并结合了超子和玻色子暗物质,通过相过渡到非本地nambu - jona-lasinio模型与颜色超导性描述。我们评估了模型与观察数据的兼容性,并使用贝叶斯分析来限制其参数。
图 1.1:粒子物理学的标准模型,其中夸克及其反夸克伙伴为紫色,轻子和反轻子为绿色,规范玻色子为红色。该图还包括黄色的标量玻色子 [11]。
测量包含的和差分横截面,用于单个顶级夸克产生,与质子 - 普罗顿碰撞中的W玻色子相关,√s= 13 TEV 21/04/2023IsidroGonzálezCaballero,Barbara
2015 年,LHCb 合作组报告在衰变中观察到与粲偶素五夸克态一致的共振态[1]。实际上,衰变成的状态可能具有独特的特征[2]。最小夸克含量可被识别为,即粲偶素五夸克。虽然自夸克模型建立以来就预测了这种由四个夸克和一个反夸克组成的五夸克的存在[3–5],但对它的实验分析却花了很长时间。这种新粒子彻底改变了我们对于奇异状态的理解,这些状态无法包含在标准光谱学的传统夸克-反夸克和三夸克方案中。粲偶素五夸克被标记为,带电荷,并与粲偶素耦合。此外,它们是在重味重子领域观察到的第一个奇异状态。
近年来,已经发现了传统的夸克模型以外的许多新的HADRONEC状态,这些状态被共同称为异国野蛮状态。在其中,可以将大量的大量解释为通过残留的强相互作用,例如D ∗ S 0(2317)和P C pentaquark态形成的HADRONIC分子,即绑定或共振状态,可以很好地解释为dk和σc c c c c c c c c c of(∗)分子状态[1,2]。这两体分子状态的图像可以通过精确的几体方法(高斯膨胀方法)扩展到三体Hadronic系统[3]。在这项工作中,我们基于DK相互作用和一个玻色子交换模型来研究DDK系统,并预测了DDK分子状态的存在[4,5,6,7]。利用重的夸克对称性[8],b k和ξcc。k
重味夸克与粲夸克和美夸克一样,是研究高能重离子碰撞中产生的无色介质——夸克胶子等离子体 (QGP) 的灵敏探测器。ALICE 合作组在 √ s NN = 5.02 TeV 的 Pb-Pb 碰撞中测量了奇异和非奇异 D 介子的产生。对 D 介子的椭圆 (v2) 和三角 (v3) 流的测量可以深入了解粲夸克在低横向动量 (pT) 下参与介质集体运动的情况,同时限制了介质内能量损失的路径长度依赖性。此外,利用事件形状工程 (ESE) 技术对非奇异 D 介子椭圆流研究了粲夸克与底层介质中轻夸克的耦合。最后,通过首次测量 LHC 能量下 D0 电荷相关定向流与伪快速度的关系,研究了碰撞早期产生的磁场的影响。
在本节中,我们将研究对Sidis喷气生产的横截面生产的虚拟校正,考虑到三个主要目标:(i)为选择结果定义的(强大)依赖性(强)依赖于上一节所总结,(ii)证明了与tmd per the the the the the the the the the the the the the the the the the the the the the the the the per the perifient in the per the the the perifient的限制(ii)。 (等效地,这是聚类条件B,等式(18)在当前材料中,选择β= 0),(ii)确定等式中显示的虚拟校正结果。(12)在字母中,确实与上面(ii)上提到的“物理”喷射定义相对应。我们回想起射流定义与TMD分解之间的兼容性至关重要,以确保忠实地测量的射流结构在扰动理论中忠实地测量了QCD过程的党派图片,包括自然的parton虚拟性。在我们进行之前,重要的是要强调,从图表的角度来看,我们感兴趣的“虚拟纠正”不仅包括真正的虚拟图(对振幅的一环校正),而且还包括现实的校正,还包括nlo恢复的一部分 - 涉及三个参与者(一个三个党派)(一个均匀的派别)如果Gluon射流与夸克射流没有很好地分开(这意味着Quark和Gluon由Jet算法组合在同一喷气机中)。这对于当前目的很重要,因为这种(可能的)实际NLO更正是唯一对实际
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
f q / a(x q),f q / b(x q):Parton分布函数(PDFS)表示概率密度,以在Hasdron b中找到具有动量分数x q的夸克q,而具有动量分数x q,具有动量分数x。
利用重夸克可观测量来探测相对论重离子碰撞中产生的违背纵向增强不变性的初始能量密度分布。利用改进的朗之万模型和(3+1)维粘性流体动力学模型,我们研究了 RHIC 能量下重介子及其衰变电子的核修正因子(RAA)、定向流(v1)和椭圆流(v2)系数。我们发现,核物质在反应平面的逆时针倾斜会导致在后向(前向)快速度区出现正(负)重味v1,其大小随着重夸克横向动量的增加而增加。不同角度区域之间重味RAA的差异也被提出作为表征介质分布不对称性的补充工具。我们的模型结果与 RHIC 目前可用的数据一致,并提供了可以通过未来测量进行检验的预测。