摘要:地面振动是爆破活动最不利的环境影响之一,会对邻近的房屋和建筑物造成严重损坏。因此,有效预测其严重程度对于控制和减少其复发至关重要。不同的研究人员提出了几种常规振动预测方程,但大多数仅基于两个参数,即单位延迟使用的炸药量和爆炸面与监测点之间的距离。众所周知,爆破结果受许多爆破设计参数的影响,例如负担、间距、火药系数等。但这些都没有被考虑在任何可用的常规预测器中,因此它们在预测爆炸振动时显示出很高的误差。如今,人工智能已广泛应用于爆破工程。因此,本研究采用了三种人工智能方法,即高斯过程回归 (GPR)、极限学习机 (ELM) 和反向传播神经网络 (BPNN),来估计印度 Shree Cement Ras 石灰石矿爆破引起的地面振动。为了实现该目标,从矿场收集了 101 个爆破数据集,其中粉末系数、平均深度、距离、间距、负担、装药重量和炮泥长度作为输入参数。为了进行比较,还使用相同的数据集构建了一个简单的多元回归分析 (MVRA) 模型以及一种称为多元自适应回归样条 (MARS) 的非参数回归技术。本研究是比较 GPR、BPNN、ELM、MARS 和 MVRA 以确定其各自预测性能的基础研究。八十一 (81) 个数据集(占总爆破数据集的 80%)用于构建和训练各种预测模型,而 20 个数据样本(20%)用于评估所开发的预测模型的预测能力。使用测试数据集,将主要性能指标,即均方误差 (MSE)、方差解释 (VAF)、相关系数 (R) 和判定系数 (R2) 进行比较,作为模型性能的统计评估指标。本研究表明,与 MARS、BPNN、ELM 和 MVRA 相比,GPR 模型表现出更出色的预测能力。GPR 模型显示最高的 VAF、R 和 R 2 值分别为 99.1728%、0.9985 和 0.9971,最低的 MSE 为 0.0903。因此,爆破工程师可以采用 GPR 作为预测爆破引起的地面振动的有效且合适的方法。
因此,填海计划和发行的文件允许该采石场及其在规划开发区 1 号土地上的使用。 2 3(石灰石采石场和混合用途)和规划开发区 No. 2 24(石灰石采石场和混合用途),位于威斯康星州弗兰克林 5335 西罗森大道场地,位于北面西罗森大道、南面西德雷克塞尔大道、东面南 51 街和西面南 68 街的近似边界内,日期为 2021 年 4 月 29 日,并经所有相关市政府部门审查,包括包括但不限于城市发展部门和工程部门,以及根据《市政法典》第 1 7 6 章进行审查的任何必要条件和后续审查金属采矿回收,以及根据威斯康星州法规第 29 5 第 I 分章“非金属采矿回收”,可能需要进行所有必要的审查和批准。
目录1。简介2。cemp i)对潜在损害采石场活动的风险评估ii)识别“生物多样性保护区”的识别iii)iii)iii)实际手段(物理措施和敏感的工作实践),以避免或减少采石过程中的影响或减少影响iv期间的影响) (ECOW)或类似有能力的人VII)使用保护围栏,排除障碍和警告标志附录A - 图纸编号KD CHL.005块分阶段的工作和修复方案图编号KD CHL.003概念修复图编号KEDL CEMP生物多样性缓解和增强措施上方和下方提出的Hibernacula(取自HA DMRB第10卷第4节附件D)
1) 检查当天没有进行任何处置活动。根据与现场人员的讨论,CCR 通过端倾倒和散布的方式在垃圾填埋场进行处置,这与前几年检查中观察到的活动一致。卡车使用用 CCR 和碎石灰石建造的通道将 CCR 运送到活跃的填充区域。卡车将 CCR 倾倒在靠近山顶的 CCR 斜坡顶部。然后,前端装载机或推土机将 CCR 推到斜坡上。活跃的处置区域有两个主要的 CCR 斜坡,上坡和下坡。它们之间有一个退让线(照片 1)。斜坡高达约 150 英尺,坡度陡峭,水平 1.25 比垂直 1(1.25H:1V)。根据目前的操作,CCR 放置在下坡的顶部(照片 2)。
执行摘要 本报告讨论了 2015 年 8 月至 9 月在位于鰂鱼涌英皇道 971 号的汇丰银行零售分行安装和试点测试 COOL NOMIX ® 节能技术的结果。该报告是应仲量联行 (JLL) 代表其客户汇丰银行的要求编写的。JLL 是一家全球性房地产组织,在 80 多个国家/地区设有 230 多个公司办事处。其主要关注三个地理区域:美洲;欧洲、中东和非洲 (EMEA);以及亚太地区。汇丰银行的鰂鱼涌分行配备了四台大金可变制冷剂流量 (VRV) 机组,成对运行,为 33 个室内风机盘管提供服务。每个 VRV 的额定功率为 18 HP,整体基础设施使用 TMAC 楼宇管理系统 (BMS)。这些 VRV 机组为分行的 4 个不同部分提供制冷,即柜台服务、后台办公室、优先银行业务和 24 小时特快银行/ATM 服务。由于物理访问困难,只能在 33 台大金制造的室内风机盘管机组中的 22 台上安装 COOL NOMIX ®。在整个试点计划期间,使用两个 Efergy e2 Classic 无线功率计测量 VRV 特定功耗,每个功率计连接到一对 VRV 机组。试点以两周的基线开始,在此期间从 8 月 23 日星期日到 9 月 5 日星期六收集功耗数据,期间 COOL NOMIX ® 未运行。这两周之后,COOL NOMIX ® 的安装工作立即开始,并于 9 月 12 日星期六完成。第二天,开始了为期两周的 COOL NOMIX ® 运行期。在此期间,还收集了功耗数据。下表显示了基线期间和运行 COOL NOMIX ® 时的空调功耗综合结果。