4.1.6 可追溯性和同质性。除选项 D 外,所有设计谱系均具有可追溯到制造商单个晶圆的有效设备批次;所有其他元素和材料均可追溯到其制造商和进货检验批次。设计谱系 E 和 R 具有同质材料。此外,扫描石英晶体可追溯到石英棒和高压釜批次的加工细节。Microchip 定义的生产批次是所有已装配并作为单个组制造的振荡器。单个批次日期代码的最大可交付数量为 150 个单位。超过 150 个单位的订单数量将以多个批次日期代码交付,交货间隔为 3 周。如果适用,每个生产批次将配备同质材料,然后将其分配到多个批次日期代码版本中以满足可交付订单数量。订购时,除非采购订单另有说明,否则将在生产批次中的第一个构建批次上执行 C 组检查、批次资格和/或 DPA。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
UmiX U9 是一款专为军事应用而设计的固态 6 轴高动态惯性测量装置。传感器核心集成了高级光纤陀螺仪 (FOG),具有长期稳定性,可实现寻北和 GNSS 拒绝导航。它还包括能够承受恶劣机械环境的高动态石英加速度计。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
Aquafine 的产品采用最先进的设计标准,例如 T 型钻头连接和轨道焊接,可确保使用寿命和纯度。所有装置均配备卫生入口/出口连接,卫生套圈端板取代了普通的螺栓和螺纹设计,消除了潜在的污染点。Aquafine 的紫外线系统采用单端 (SE) 设计的灯。单端选项提供更轻松、更快速的灯更换时间,断开次数较少。我们的 Colorguard® 灯采用颜色编码,易于识别,并且经过验证。甚至容纳灯的石英管(套管)也经过专门设计,效率高。它们传输灯产生的 95% 的紫外线能量。Aquafine 的 Lamp Lok™ 组件将紫外线灯牢固地置于石英套管内并锁定到位。这些系统的湿润表面为 316L 不锈钢,经过钝化和电抛光,以确保耐腐蚀性并最大限度地减少碳沉淀。9. Aquafine 还有哪些其他优势?
Cermax® 氙气灯型号 PE1000D-13F 和 PE1000D-13UV 具有集成椭圆形反射器,可实现高强度、聚焦的紫外线、可见光和红外线辐射输出。凭借其内部反射器和坚固的陶瓷灯体结构,Cermax® 氙气灯是传统石英氙气灯最安全、最紧凑的替代品。这使它们成为需要高度照明控制的应用的理想选择。
天然粘土是一种具有各种好处并且在环境中丰富的材料。这项研究将研究来自印度尼西亚东爪哇的Tulungagung的天然粘土的特征。这项研究使用了来自Tulungagung的两个天然粘土-1(NC-1)和天然粘土2(NC-2)样本,贡登区Sidem村。在室温下将天然粘土干燥2天,然后使用100个网状筛粉碎和筛分。X射线衍射(XRD),X射线荧光(XRF),红外光谱(IR)和扫描电子显微镜(SEM)已用于表征自然粘土。XRF分析表明,Tulungagung天然粘土的主要成分是Fe,Si和Al。Montmorillonite,Quartz和Aratase是主要的天然粘土矿物。SEM的结果表示不均匀的材料表面。关键字:自然粘土;化学成分;矿物质含量;形态学
摘要:Mueller矩阵椭圆测量法已用于精确表征石英波板,用于在半导体行业苛刻的应用和高精度偏光仪。我们发现这种实验技术对使用是有益的,因为它使我们能够在宽光谱范围内获得绝对和精确的延迟测量,波浪板方向以及复合波板调节。在本文中,证明了在Mueller矩阵模型和数据处理中包括光活性的必要性。尤其是,石英的光活性会影响化合物双重垂直方向波动板之间的未对准的调整。我们证明,从模型中省略光学活性会导致未对准的值不准确。此外,模型中包括有限单色带宽引起的去极化效应。将光活性纳入Mueller矩阵模型已需要基于适当的本构方程的严格理论发展。已将广义的YEH的基质代数与双异型培养基用于计算具有减少对称性的手性材料中的本本征传繁殖。基于应用方法,作者提出了代表光学波动板和双座的Mueller矩阵的近似分析形式,并提供了有关该方法的分析和数值限制的讨论。