在多个量子位上表现出显着的时间和空间相关性的噪声可能对易于断层的量子计算和量子增强的计量学尤其有害。然而,到目前为止,尚未报道对即使是两数量子系统的噪声环境的完整频谱表征。我们提出并在实验上证明了基于连续控制调制的两量偏角噪声光谱的方案。通过将自旋锁定松弛度的思想与统计动机的稳健估计方法相结合,我们的协议允许同时重建所有单量和两倍的互相关光谱,包括访问其独特的非分类特征。仅采用单一QUIT控制操作和状态训练测量,而不需要纠缠状态的准备或读取两量点的可观察物。我们的实验演示使用了两个与共享的彩色工程噪声源相连的超导码位,但我们的方法可移植到各种dephasing主导的Qubit架构上。通过将量子噪声光谱推向单量环境,我们的工作预示着工程和自然发生的噪声环境中时空相关的特征。
工作流:为了减少量子弹出,我们首先执行并测量一批射击后的输出。使用关节输出分布,我们得出每个量子的边际分布。基于这些概率,我们在测量可能处于| 1⟩状态的量子位之前插入X门(也称为位流门)。重复此过程以进行后续迭代。
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
我们提出了一个二维硬核环路模型,是一种在Berezinskii-kosterlitz-无用的过渡时期出现的渐近自由质量连续性量子场理论的一种方式。无需微调,我们的模型可以在接近相变时在大规模阶段重现经典晶格XY模型的通用级尺度函数。这是通过在热力学极限下降低回路配置空间中的fock-vacuum位点的散发性来实现的。与传统的XY模型相比,在Berezinskii-Kosterlitz上的某些通用量在我们的模型中显示出较小的有限尺寸效应。我们的模型是欧几里得时空中渐近自由质量量子场理论的Qubit正则化的一个典型例子,并有助于了解如何在不进行微调的情况下作为分离的固定点上的相关扰动而出现渐近自由。
国际教育技术学会(ISTE)是全球教育工作者和解决方案提供商社区的所在地,他们热衷于使用技术革新学习。我们的愿景是创建一个大胆的社区,在该社区中,教育创新者在重新构想和重新设计学习方面得到支持,重点是利用技术为学习者创造变革和公平的体验。我们通过提供实践指导,基于证据的专业学习,虚拟网络,发人深省的事件和ISTE标准来实现这一愿景。iSte密封式印章是用于实现和指导高质量学习的解决方案的高质量产品设计的标志。通过选择展示他们致力于支持教学和学习最佳实践的承诺,这些产品表现出对实际可用性,数字教学实施和ISTE标准的有目的而有意义的奉献精神。重点关注用户体验,产品可用性以及当今教学技术最重要的要素,ISTE密封提供了一组标准和简单的指标,以指导教育工作者,学生和技术总监,以实现市场上最好的产品。ISTE仅在经过训练的ISTE审稿人进行了广泛的分析后,才能确保产品在特定的审查标准下符合所有关键要素。
标题为“多量芯片拓扑的优化”的海报着重于设计用于多量量子处理器的可扩展和高效的ARCHITECTURES。该研究突出了超导量子位,以其可控性和作为量子计算中量子信息的基本单位而闻名。这项研究强调了参数的重要性,例如纠缠,量子误差校正和可扩展性在多Qubit芯片设计中。该团队提出了一个2D体系结构,其中包含三个量子位,并以等边三角形和一个3D体系结构排列,其中有四个量子位在四面体结构中。这些配置可以用作大型量子系统的模块化单元。未来的方向包括优化谐振器长度,能量参与率以及扩展较大多数阵列和系统的体系结构。在高能物理学中,量子系统用于量子模拟复杂的粒子相互作用。因此,易于扩展的多量芯片肯定是高能粒子碰撞的复杂计算和模拟的前进的道路,因此在不久的将来为其在新的和更令人兴奋的发现中为其在高能物理中的使用铺平了道路。
谷歌去年 12 月发布的 105 量子比特 Willow 处理器获得了广泛赞誉,不仅因为其质量和规模,还因为它能够承载低于阈值的表面码存储器——这种存储器可能对容错量子计算很有用 [ 1 ]。现在,潘建伟和他的同事们提出了祖冲之 3.0,它有 105 个量子比特,排列成 15 × 7 的阵列,还有 182 个量子比特耦合器(图 2 ) [ 2 ]。研究人员通过对 83 个量子比特的子集进行 32 个逻辑周期的随机电路采样来测试他们的新设备。他们确定,最强大的经典计算机需要数十亿年的运行时间才能模拟他们的量子处理器在 100 秒内生成的概率分布。这一性能比谷歌的 67 和 70 量子比特的 Sycamore 处理器 [ 6 ](Willow 的两个前身)高出几个数量级。
我们分析了结合小处理器和存储单元的量子计算机架构的性能。通过关注整数分解,我们显示了使用带有最近邻居连接的Qubits平面网格相比,加工量量数的几个数量级。这是通过利用时间和空间多路复用的内存来实现的,以在处理步骤之间存储量子状态。具体而言,对于10-3的特征物理门错误率,处理器周期时间为1微秒,分解一个2 048位RSA整数在177天内可以在177天内使用3D仪表颜色代码,假设阈值为0。75%的处理器用13个436个物理Qubits制造,并且可以存储2800万个空间模式和45个时间模式,并具有2小时的存储时间。通过插入其他错误校正步骤,证明1秒的存储时间足以使运行时的成本增加约23%。较短的运行时间(和存储时间)可以通过增加处理单元中的量子位数来实现。我们建议使用用超导量子台制成的处理器与使用稀土离子掺杂的固体中的光子回声原理的处理器之间的微波接口实现这种体系结构。
Qubit读数是任何量子信息处理器中必不可少的元素。在这项工作中,我们在实验中证明了transmon和Polarmon模式之间的非扰动交叉kerr耦合底,该模式可以改善量子非态度(QND)读数,用于超导速度。新机制使用与分散近似中的标准QND量子读数相同的实验技术,但由于其非扰动性质,它最大化了速度,单发忠诚度和读取的QND属性。此外,它可以最大程度地减少不需要的衰减通道的影响,例如purcell效应。我们观察到短50 ns脉冲的单次读数保真度为97.4%,并且对长度测量脉冲的QND度为99%,并具有重复的单发读数。
多路复用操作和对多个陷阱站点的扩展相干控制是大规模体系结构中陷阱离子处理器的基本要求。在这里,我们使用具有积分光子组件的表面电极陷阱来证明这些构建块,这些陷阱可扩展到大量区域。我们在两个区域中使用集成光实施了一个拉姆西序列,分别为375μm,在脉冲之间在200μs中从一个区域转移到另一个区域。为了在运输过程中实现低运动激励,我们开发了用于测量和减轻用于将集成光传递到离子的裸露介电表面的影响的技术。我们还证明了在具有低光学串扰的单独区域中对两个离子的同时控制,并使用它执行同时光谱,以将两个位点之间的场噪声相关联。我们的工作展示了集成光子离子陷阱系统中的第一个运输和连贯的多ZONE操作,这为在被困的离子量子量耦合器件架构中进一步扩展构成了基础。