MaríaJoséPaspuelvilacísmajopaspuel@hotmail.com https://orcid.org/0009-0006-3435-5717骨科和创伤学的整体中心(CIOT):Quito,Pichincha,EC
i。II。 s 基础教育学校“ Baham Lincoln”,厄瓜多尔Quito EC-170507。 s iii。 s cascame教育,基础教育,新Loja 210203,厄瓜多尔。 s v。 s cascame教育,基础教育,新Loja 210203,厄瓜多尔。 s V. V. V. V.小学“ Baham Lincoln”,EC-170507,厄瓜多尔。 sII。基础教育学校“ Baham Lincoln”,厄瓜多尔Quito EC-170507。iii。cascame教育,基础教育,新Loja 210203,厄瓜多尔。v。cascame教育,基础教育,新Loja 210203,厄瓜多尔。V. V. V. V.小学“ Baham Lincoln”,EC-170507,厄瓜多尔。 sV. V. V. V.小学“ Baham Lincoln”,EC-170507,厄瓜多尔。
生物材料工程系,卫生科学学院,UCAM-Universidad cat。奥利卡·圣安东尼奥·穆尔西亚(Olica san Antonio de Murcia) 077,印度c海洋生物制药系,食品科学技术学院,上海海洋大学,上海20130,20166年,中国D绿色和食品,环境和生物工程研究小组,药房和营养学院,UCAM-UCAM-UNIVERIDAD CAT CAT olica san Antonio de Murcia,3010107 Murcia,Quit Quit Quit Quit Quit USFQ,政治家,Quito 170901,厄瓜多尔F植入牙科系,医学和牙科学院,UCAM-Universidad cat。Olica San An-Tonio de Murcia,30107 Murcia,Spain生物材料工程系,卫生科学学院,UCAM-Universidad cat。奥利卡·圣安东尼奥·穆尔西亚(Olica san Antonio de Murcia) 077,印度c海洋生物制药系,食品科学技术学院,上海海洋大学,上海20130,20166年,中国D绿色和食品,环境和生物工程研究小组,药房和营养学院,UCAM-UCAM-UNIVERIDAD CAT CAT olica san Antonio de Murcia,3010107 Murcia,Quit Quit Quit Quit Quit USFQ,政治家,Quito 170901,厄瓜多尔F植入牙科系,医学和牙科学院,UCAM-Universidad cat。Olica San An-Tonio de Murcia,30107 Murcia,Spain
a 厄瓜多尔基多萨利安理工大学 b 计算机工程系生物神经计算组。高等理工学校。马德里自治大学,28049 马德里,西班牙 c 内布里哈大学,马德里,西班牙 d 马德里康普顿斯大学,马德里,西班牙 e 马德里自治大学基础心理学系,马德里,西班牙
I.自治研究人员的普通医生,毕业于厄瓜多尔天主教大学。 div>II。 div>一般医学,自主研究人员,毕业于厄瓜多尔阿祖大学。 div>iii。 div>一般医学,自治研究人员,毕业于厄瓜多尔昆卡大学。 div>iv。 div>医学内部在厄瓜多尔基多的Calderón的通用教学医院内部。 div>
图 1.1 能源三难困境。 ........................................................................................................... 1 图 1.2 全球能源消耗 [10]。 ......................................................................................................... 2 图 1.3 风电输出呈现 Kolmogorov 谱特征 [52]。 .................................................... 6 图 1.4 独立的光伏氢能发电系统 [62]。 ......................................................................................... 7 图 1.5 参考文献 [102] 将风能划分为每小时能量、负荷跟踪和调节部分的概念图。 ........................................................................... 11 图 2.1 风力涡轮机的理论功率曲线。 ........................................................................................... 22 图 2.2 美国为研究风能变化和 SAWP 系统而选定的六个地点。 ........................................................................................... 24 图 2.3 美国科罗拉多州 12 个选定的风电互联地点。 ........................................................................................................................................... 25 图 2.4 2012 年西半球 2012 年在 (a) 旧金山、(b) 洛杉矶、(c) 丹佛、(d) 休斯顿、(e) 芝加哥、(f) 纽约的风速。 ........................................................................... 26 图 2.5 北美和南美选定的六个地点,用于研究太阳能变化、SAPVP 系统和独立的风能和太阳能混合发电系统。 30 图 2.6 2017 年西半球 2017 年在 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华的太阳辐照度。 ........................................................................... 31 图 2.7 不同纬度地区太阳辐射发射示意图。 ........................................................................................................................................................ 33 图 2.8 2007 年至 2012 年,相关系数随两台风力涡轮机之间的距离而变化。 ........................................................................................................................... 44 图 2.9 2007 年至 2012 年(a)基多、(b)瓦伦西亚、(c)墨西哥城、(d)休斯顿、(e)盐湖城、(f)温哥华相关系数随太阳能/风能混合比例而变化。 ........................................................................................................... 45 图 2.10 2012 年休斯顿(a)风能和(b)太阳能的频谱。 ........................................................................................................................................... 48 图 2.11 2007 年(a)、2008 年(c)、2009 年(d)2010 年(e)12 个选定地点不同数量的互连风力涡轮机的频谱2011 年、(f)2012 年。..............................................................................49 图 2.12 2012 年 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华不同混合比例互联风能和太阳能的频谱。 ........................................................................................................... 50 图 2.13 美国选定的 6 个地点的 D wavg ( j ) 与 f ( j ) 的关系以及 (b) 北美和南美选定的 6 个地点的 D Savg ( j ) 与 f ( j ) 的关系。 ........................................................... 56 图 2.14 2007 年至 2012 年 (a) 旧金山、(b) 洛杉矶、(c) 丹佛、(d) 休斯顿、(e) 芝加哥、(f) 纽约的 DW ( y ) (j) 与频率 f ( j )。 .................................................... 57 图 2.15 2007-2012 年 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华的 DS ( y )( j ) 和频率 f ( j )。 ........................................................... 58 图 3.1 典型的独立 (a) 风力发电、(b) 太阳能发电、(c) 混合风能和太阳能发电系统。 ............................................................................................................. 62 图 3.2 P RE 和 PL 之间的功率不匹配 . ........................................................................................... 64 图 3.3 典型的年平均住宅用电量 (a) 24 小时负荷数据 (b) 一年负荷数据,(c) 负荷谐波频谱。 ............................................................................................. 65
摘要 — 量子程序实现解决复杂计算问题的量子算法。由于量子计算 (QC) 的固有特性(例如概率性质和叠加计算),测试此类程序具有挑战性。然而,需要自动化和系统化的测试来确保量子程序的正确行为。为此,我们提出了一种称为 Quito(量子输入输出覆盖)的方法,该方法由三个定义在量子程序输入和输出上的覆盖标准以及它们的测试生成策略组成。此外,我们定义了两种类型的测试预言,以及一个使用统计分析确定测试套件通过和失败的程序。为了评估这三个覆盖标准的成本效益,我们对五个量子程序进行了实验。我们使用突变分析来确定覆盖标准的有效性和测试用例数量的成本。根据突变分析的结果,我们还确定了量子程序的等效突变体。索引术语 — 量子程序、软件测试、覆盖标准、突变分析