在我们目前的工作中,我们需要一个针对Sprague-Dawley大鼠血脑屏障(BBB)内皮细胞(EC)的RAAV,但没有其他脑细胞。在系统地给药时,AAV血清型AAV9和AAV2可以在小鼠中转导BBB细胞和脑实质细胞(Dayton等,2012; Fu等,2003)。capsid变体(例如AAV9衍生的变体AAV PHP.B和AAV2衍生的变体AAV-BR1)已通过氨基酸插入进行设计,以改善小鼠的BBB转导(Hordeaux等,2018;Körbelin等,2016,2016)。尤其是,AAV2上限变体BR1在高度的小鼠BBB中转导EC,只有很少的非血管转导,并且在许多研究中使用了各种小鼠模型(Liu等,2019; Nikolakopoulou,nikolakopoulou等,2021; 2021; 2021; Rasmussen et al。,20223; Chao tan;据我们所知,目前尚无出版物在大鼠模型中测试AAV-BR1变体。
CTNNB1综合征是一种罕见的神经发育障碍(1:50,000),由CTNNB1基因的功能丧失突变引起。ctnnb1基因编码β-蛋白蛋白,该基因在神经元发育,突触形成和大脑成熟中起关键作用。因此,这些突变导致认知障碍,例如智力残疾,学习困难和发展延迟。虽然目前尚无CTNNB1综合征的治疗方法,但该疾病的遗传根本原因可以通过重组腺相关的病毒载体(RAAV)基于基于基因的基因增强疗法来解决。我们设计了六种不同的AAV-CTNNB1构建体(C1-C6)。每个构建体包括CTNNB1编码序列以及各种未翻译的调节元素,目的是识别元素最佳组合,以增强目标细胞中的转基因表达,同时最小化脱离目标表达。为此,将所有构建体分别包装到AAV载体中,并用于转导患者衍生的神经促进剂细胞和皮质脑器官。
重组腺相关病毒(RAAV)载体目前是通过基因疗法治疗眼科疾病的唯一经过验证的车辆。目前正在采用针对眼部疾病的广泛基因治疗计划。将近20年的研究已经增强了靶向视网膜组织并改善转基因对特定细胞类型的效率。工程化的AAV CAPSID,AAV2.7M8目前是玻璃体内(IVT)注射后转导视网膜的最佳衣壳之一。然而,在视网膜在临床试验中施用AAV2.7M8载体后,已经报道了包括眼内炎症在内的不良反应。此外,我们一直观察到AAV2.7M8表现出低包装滴度,而与矢量构造设计无关。在本报告中,我们发现AAV2.7M8包装矢量基因组具有比AAV2更高的程度。我们还发现,基因组加载的AAV2.7M8刺激了IVT给药后小鼠视网膜中小胶质细胞的纤维化,而对基因组负载的AAV2和空的AAV2.7M8 capsids的反应产生了很多较轻的响应。这个发现表明,IVT施用AAV2.7M8载体可能会刺激视网膜免疫反应,部分原因是它偏爱包装和提供非单位长度基因组。
丙酮酸激酶降低(PKD)是一种常染色体衰竭,是慢性非细胞性溶血性贫血的主要原因。pKD是由丙酮酸激酶,肝脏和红细胞(PKLR)基因中的突变引起的,该基因编码为红酮丙酮酸激酶蛋白(RPK)编码。rpk与红细胞(RBC)厌氧糖酵解的最后一步有关,负责维持正常的红细胞ATP水平。PKD的唯一治疗方法是同种异性造血茎和祖细胞(HSPC)移植,与显着的发病率和死亡率相关,尤其是PKD患者。在这里,我们通过PKLR内源性基因座的精确基因编辑来解决PKD的校正,以保持呈红生酶期间RPK酶的严格调节。我们合并了CRISPR-CAS9系统和供体的腺相关载体(RAAV)递送,以建立一个有效,安全且临床上适用的系统,以在人类造血祖先中RPK同工型的翻译起始位点敲击治疗序列。编辑的人类造血祖细胞在原发性和继发性免疫型小鼠中有效地重构的人伴有人伴有。源自编辑的PKD-HSPC的红细胞细胞恢复了正常的ATP水平,表明基因编辑后PKD红细胞生成中RPK功能的恢复。 我们的基因编辑策略可能代表了PKD患者RBC中RPK功能的终生疗法。红细胞细胞恢复了正常的ATP水平,表明基因编辑后PKD红细胞生成中RPK功能的恢复。我们的基因编辑策略可能代表了PKD患者RBC中RPK功能的终生疗法。
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
重组AAV载体序列是否可以转导男性精子干细胞并产生载体DNA阳性成熟的精子细胞(即垂直生殖线传播),并在科学文献中进行了广泛的研究和报道。Schuettrumpf等,2006,以及Jakob等,2005; Favaro等,2009; Arruda等,2001和Fonck等人,2022年未检测到在输注重组AAV后小鼠或兔子中数十个累积的精子发生循环中得出的精子中的载体序列。这表明雄性性腺组织的生物分布不会导致携带载体DNA的精子产生。以及上述女性生殖组织中载体信号的缺失,这表明用CSL222治疗的患者在etranacogene dezaparvovec的无意生殖系转移(水平或垂直)的可能性极低。在输注后几天以上后,没有人体流体脱落转导能力的载体颗粒(Schuettrumpf,2006; Favaro等,2009; Rangarajan et al,2017; Fonck等,2022)。在直接灌注后期的转导能力的病毒颗粒的细胞摄取后,将使剩余的衣壳轴承轴承颗粒变得无能力,并通过开发针对身体流体中AAV5 Capsid蛋白的有效NAB反应(在几天之内)来消除。CSL222临床试验中的所有受试者在载体输注后2-3周内产生了这种免疫反应。这种免疫反应持续持久,超过了在试验对象中可观察到的载体DNA的任何时期。因此,没有相关的暴露风险有能力的AAV颗粒,因此没有长时间的相关暴露风险被转导向接触。在直接灌注后期接触的风险通过建议在HEMGENIX SMPC中概述的Hemgenix给药后1年使用屏障避孕的建议进一步减轻。基于精液中的向量DNA的低水平,其在精液中的存在而不是精液的细胞分数,非复制RAAV矢量的低整合潜力,以及在过渡粒子中的屏障避孕液在精液中存在于精液中,在精液中存在的障碍避孕的建议。
传统上,将基因组编辑试剂引入哺乳动物受精卵是通过细胞质或原核微注射完成的。这一耗时的过程需要昂贵的设备和高水平的技能。受精卵电穿孔提供了一种简化和更精简的方法来转染哺乳动物受精卵。有许多研究检查了小鼠和大鼠受精卵电穿孔中使用的参数。在这里,我们回顾了已报道的小鼠和大鼠的电穿孔条件、时间和成功率,以及关于牲畜受精卵(特别是猪和牛)的少数报道。在受精时或受精后不久引入编辑试剂可以帮助降低嵌合率,即个体细胞中存在两种或更多种基因型;引入核酸酶蛋白而不是编码核酸酶的 mRNA 也可以。嵌合在世代间隔较长的大型牲畜物种中尤其成问题,因为通过繁殖获得非嵌合的纯合后代可能需要数年时间。通过非同源末端连接途径实现的基因敲除已得到广泛报道,并且使用电穿孔成功实现的基因敲除比基因敲入更多。将大型 DNA 质粒递送到受精卵中会受到透明带 (ZP) 的阻碍,并且大多数通过电穿孔实现的基因敲入都使用短单链 DNA (ssDNA) 修复模板,通常小于 1 kb。在不使用细胞质注射的情况下,将长达 4.9 kb 的较大供体修复模板与基因组编辑试剂一起递送到受精卵中最有希望的方法是使用重组腺相关病毒 (rAAV) 与电穿孔相结合。但是,与用于递送成簇的规律间隔回文重复序列 (CRISPR) 基因组编辑试剂的其他方法类似,这种方法也与高水平的嵌合性有关。最近的研究成果是利用编辑过的生殖系能力细胞补充生殖系消融个体,从而避免基因组编辑创始系生殖系中出现嵌合现象。即使通过电穿孔介导将基因组编辑试剂递送至哺乳动物受精卵,基因组编辑流程中仍存在其他瓶颈,目前阻碍了非嵌合基因组编辑牲畜的可扩展生产。
上午8:55,会议1:眼部疼痛与炎症主席:医学博士Pooja Bhat博士;联合主席:Elmira Jalilian博士,博士学位08:55干眼症病理学谱系:自身免疫自身免疫,MD Sandeep Jain博士,UIC,UIC 09:15Sjögren病和非Sjögren疾病患者具有类似的转录记录,涉及Conjunctuncunctiva的免疫记录。 Cintia de Paiva博士*,医学博士,医学博士,贝勒医学院,贝勒医学院09:35免疫细胞:未见的眼部健康和韧性监护人Daniel Saban博士Daniel Saban*,PhD,杜克大学09:55透过表面看:神经想象的中心痛苦的中心痛苦,埃里克·莫尔顿(Eric Moulton)* Neovanculinization Dimitri Azar博士,医学博士,MBA,FARVO,UIC上午10:25休息(20分钟)10:45 AM Session 2:罕见或新兴的眼主持人感染:Jason McAnany博士,博士;联合主席:Pankaj Sharma博士,博士学位10:45无疼痛,没有增益:麻醉丙泊酚如何增加宿主对微生物感染的敏感性。 Nancy Elizabeth Freitag博士,博士,UIC 11:05 Ebola,新兴感染与眼睛:内布拉斯加大学史蒂芬·耶(Steven Yeh)*,医学博士史蒂芬·耶(Steven Yeh)博士11:25 MITOCHRIACRIALIAL DYDALIC和抗生素反应在Zika Virus感染过程中。上午8:55,会议1:眼部疼痛与炎症主席:医学博士Pooja Bhat博士;联合主席:Elmira Jalilian博士,博士学位08:55干眼症病理学谱系:自身免疫自身免疫,MD Sandeep Jain博士,UIC,UIC 09:15Sjögren病和非Sjögren疾病患者具有类似的转录记录,涉及Conjunctuncunctiva的免疫记录。Cintia de Paiva博士*,医学博士,医学博士,贝勒医学院,贝勒医学院09:35免疫细胞:未见的眼部健康和韧性监护人Daniel Saban博士Daniel Saban*,PhD,杜克大学09:55透过表面看:神经想象的中心痛苦的中心痛苦,埃里克·莫尔顿(Eric Moulton)* Neovanculinization Dimitri Azar博士,医学博士,MBA,FARVO,UIC上午10:25休息(20分钟)10:45 AM Session 2:罕见或新兴的眼主持人感染:Jason McAnany博士,博士;联合主席:Pankaj Sharma博士,博士学位10:45无疼痛,没有增益:麻醉丙泊酚如何增加宿主对微生物感染的敏感性。Nancy Elizabeth Freitag博士,博士,UIC 11:05 Ebola,新兴感染与眼睛:内布拉斯加大学史蒂芬·耶(Steven Yeh)*,医学博士史蒂芬·耶(Steven Yeh)博士11:25 MITOCHRIACRIALIAL DYDALIC和抗生素反应在Zika Virus感染过程中。Nancy Elizabeth Freitag博士,博士,UIC 11:05 Ebola,新兴感染与眼睛:内布拉斯加大学史蒂芬·耶(Steven Yeh)*,医学博士史蒂芬·耶(Steven Yeh)博士11:25 MITOCHRIACRIALIAL DYDALIC和抗生素反应在Zika Virus感染过程中。Ashok Kumar*博士,博士,韦恩州立大学,韦恩州立大学11:45 Ocular MPOX:模型系统和开发抗病人Vaithilingrighilaja Arumugaswami*,PhD,UCLA,UCLA 12:05 Niemann-Pick型C1型C1类式C1-Like1(NPC1L1)在促进SARS-COV-2 DR. SARS-COV-2 DR. University 12:15 PM LUNCH (45 minutes) 01:00 PM Session 3: Herpetic Eye Diseases Chair: Dr. Tibor Valyi-Nagy, MD, PhD Co-Chair: Dr. Hemant Borase, PhD 01:00 Why HSV Infects the Eye: Causes and Solutions Dr. Deepak Shukla, PhD, UIC 01:20 HSV-1 Influences Neuroinflammation & Senescence in Brainstem During Latency克林顿·琼斯(Clinton Jones)博士*,俄克拉荷马州立大学博士学位01:40巨噬细胞在炎症和眼科疾病中的作用佐治亚州立大学/埃默里大学02:20靶向HSV-1的RAAV的核酶的角膜应用可显着降低眼睛中的病毒重新激活。 (30分钟)