缩写:3C,染色体构象捕获;4C,环状染色体构象捕获;ATAC-seq,使用测序检测转座酶可及染色质;Cas9,来自化脓性链球菌的内切酶;CHIP-seq,染色质免疫沉淀和 DNA 测序;CRISPR,成簇的规律间隔的短回文重复序列;CTCF,CCCTC 结合因子;EXT1,外骨化素糖基转移酶 1;GSIS,葡萄糖刺激的胰岛素分泌;GWAS,全基因组关联研究;MED30,RNA 聚合酶 II 转录亚基 30 的介质;pcHi-C,启动子捕获 Hi-C;R,调控区;RAD21,双链断裂修复蛋白 rad21 同源物;SLC30A8,溶质载体家族 30 成员 8;SNP,单核苷酸多态性; T2D,2 型糖尿病;TAD,拓扑关联结构域;UTP23,UTP23 小亚基加工体成分。
1.大多数回路是短的(<2 Mb),并且在人类和小鼠之间,在细胞类型之间得到强烈保守。2.锚定在启动子上的环与增强子和基因激活增加有关。3。环路经常划分接触域的边界4.CTCF和粘蛋白亚基RAD21和SMC3与环相关;这些蛋白质中的每一个都以超过86%的环锚固量发现。
黏连蛋白亚基 STAG2 已成为人类癌症中反复失活的肿瘤抑制因子。最近的研究使用候选方法揭示了 STAG2 与其同源物 STAG1 之间的合成致死相互作用。为了系统地探究 STAG2 缺失下的遗传脆弱性,我们在同源细胞系中进行了全基因组 CRISPR 筛选,并确定 STAG1 是 STAG2 缺陷细胞中最突出和最具选择性的依赖性。使用可诱导的降解系统,我们表明 STAG1 蛋白的化学遗传降解会导致 STAG2 缺陷细胞中姐妹染色单体黏连性丧失和细胞快速死亡,而 STAG2 野生型细胞则不会受到影响。生化分析和 X 射线晶体学确定了与黏连蛋白复合物的 RAD21 亚基相互作用的 STAG1 区域。消除这种相互作用的 STAG1 突变会选择性地损害 STAG2 缺陷细胞的生存能力。我们的工作强调了 STAG1 的降解和抑制其与 RAD21 的相互作用是一种有前途的治疗策略。这些发现为开发 STAG1 导向的小分子以利用 STAG2 突变肿瘤中的合成致死性奠定了基础。
蛋白和 STAG 蛋白的全基因组分布尚未直接探索。因此,在 WT mESC 中检查了 PDS5A、PDS5B、STAG1 和 STAG2 的全基因组分布,并揭示了所有四个亚基的 ChIP-seq 信号在联合列表中存在显著重叠,包括在任何单个数据集中识别的所有峰 (54,213) (图 4A)。值得注意的是,最强的 PDS5 峰也是最强的 STAG 峰,表明所有四个亚基的染色质结合水平呈正相关。在低和高严格、未交联条件下进行 PDS5A、PDS5B 和 RAD21 的共免疫沉淀,以研究黏连蛋白复合物亚基组成的潜在特异性;对 STAG1 和 STAG2 亚基的蛋白质印迹表明 STAG1 和 STAG2 都
leukemiutringbenmärg/blod mylood面板*(ABL1,ANKRD26,ASXL1,ATRX,BCOR,BCOR,BCORL1,BRAF,CALR,CALR,CBL,CBL,CBL,CBL,CDKN2A,CDKN2A,CEBPA,CEBPA,CEBPA,CSF3R,CSF3R,CSF3R,CUX1,DDX41,DDX41,DNMT3A fbxw7, FLT3, GATA1, GATA2, GNAS, HRAS, Idh1, Idh2, Ikzf1, jak2, jak3, kdm6a, kit, kraas, kmt2a, mpl, myd88, NF1, Notch1 (INKLUSIVE 3´UTR), NPM1, NRAS, PDGFRA, PHF6, PPM1D, Pten, Ptpn11, Rad21, Runx1, Samd9, SAMDL9, Setbp1, SF3B1, SMC1A, SMC3, SRSF2, Stag2, Stat3, Stat5B, Tet2, TP53, U2AF1, WT1, ZRSR2, BTK, plcg2, terc) Div>
摘要 ◥ 人们在骨肉瘤中进行了多项大规模基因组分析,以确定肿瘤发生、治疗反应和疾病复发的基因组驱动因素。肿瘤内空间和时间的异质性也可能在促进肿瘤生长和治疗耐药性方面发挥作用。我们对 8 名复发或难治性骨肉瘤患者的 37 个肿瘤样本进行了纵向全基因组测序。每位患者至少有一个来自原发部位和转移或复发部位的样本。除一名患者外,所有患者均发现了亚克隆拷贝数变异。在 5 名患者中,来自原发性肿瘤的亚克隆出现并在随后的复发中占主导地位。在 7 名具有多个克隆的患者中,6 名患者的治疗耐药性克隆中 MYC 增益/扩增富集。在耐药拷贝数克隆中还观察到了其他潜在驱动基因(如 CCNE1 、 RAD21 、 VEGFA 和 IGF1R )的扩增。染色体重复时间分析显示,复杂的基因组重排通常发生在诊断之前,支持宏观进化的进化模型,其中大量基因组畸变在短时间内获得,然后进行克隆选择,而不是持续进化。复发性肿瘤的突变特征分析表明,同源修复缺陷 (HRD) 相关的 SBS3 在每个
