本出版物仅用于提供概要信息。在任何情况下,给出的任何建议或声明或推荐均不构成或被视为构成 BAE Systems 对此类建议、声明或推荐的准确性或完整性的保证或陈述。BAE Systems 对因与本文件相关的给出或未给出的建议或做出或未做出的声明而产生的任何损失、费用、损害或索赔概不负责。未经 BAE Systems 事先明确书面同意,不得以任何形式或任何方式复制、翻印、改编或重新分发本文件的任何部分。BAE SYSTEMS 是 BAE Systems plc 的注册商标。
• ALR-400 RWR 是飞行员自我保护平台的最佳盟友 • ALR-400 旨在通过几个标准机械外壳轻松安装在各种平台(包括战斗机、运输机和直升机)上。 • ALR-400 的冷却系统使其成为即使在爆炸性环境中运行的理想选择 • 模块化设计,灵活的硬件架构 • 高空间精度和分辨率 • 广泛的空间覆盖范围 • 多 CW 场景能力 • LPI 雷达检测能力 • 提高灵敏度 • 提高动态范围 • 灵活集成 • 逻辑 ICD 适应平台
尽管自第一版出版以来,雷达的基本原理几乎没有变化。新的雷达功能不断发展,雷达技术和实践也不断改进。这种发展使得必须进行大量修订,并引入原版中没有的主题。其中一个主要变化是对 MTI(移动目标指示)雷达的处理(第4 章)。已添加的大多数基本 MTI 概念在第一版出版时就已经为人所知,但它们尚未出现在公开文献中,也没有在实践中得到广泛应用。将其纳入第一版将主要是学术性的,因为当时可用的模拟延迟线技术无法构建理论上可行的复杂信号处理器。然而,后来数字技术的进步(最初是为雷达以外的应用而开发的)已使基本 MTI 理论所指出的多个延迟线消除器和多个脉冲重复频率 MTI 雷达得以实际实施。自动检测和跟踪,或称 ADT(第 5.0 和 10.7 节)是另一项重要发展,其基本理论已为人所知,但其实际实现必须等待数字技术的进步。ADT 的原理在 20 世纪 50 年代初得到验证,使用真空管技术,作为麻省理工学院林肯实验室开发的美国空军 SAGE 防空系统的一部分。这种形式的 ADT 体积庞大、价格昂贵且难以维护。然而,20 世纪 60 年代末固态微型计算机的商业化使 ADT 变得相对便宜、可靠且体积小,因此几乎可以用于任何需要它的监视雷达。另一个得到很大发展的雷达领域是电子控制相控阵天线。在第一版中,雷达天线是主题或单独的一章。在这一版中,有一章介绍了传统雷达天线(第7 章),还有一章介绍了相控阵天线(第8 章)。用一章来介绍阵列天线更多的是出于兴趣,而不是对广泛应用的认可。有关雷达杂波的章节(第章)已重新组织,以包括在杂波存在下检测目标的方法。一般而言,在杂波背景中检测目标所需的设计技术与在噪声背景中检测目标所需的设计技术有很大不同。当前版本中新增或发生重大变化的其他主题包括低角度跟踪、“同轴”跟踪、固态射频源、镜面扫描天线、天线稳定、相控阵的计算机控制、固态双工器、CF AR、脉冲压缩、目标分类、合成孔径雷达、超视距雷达、对空监视雷达、测高仪和 30 雷达以及 ECCM。双基地雷达和毫米波雷达也包括在内,尽管它们的应用已经
尤其是,高分辨率 SAR 数据的可用性目前正在开辟一个广阔的新应用领域。由于其固有的斑点效应,与相同细节水平的光学遥感数据相比,SAR 数据显得模糊和嘈杂。只有在无斑点、点状或具有强反射的线性目标(通常是人造结构或车辆)上,SAR 的实际分辨率能力才能得到充分开发。因此,要实现与光学数据类似的可解释性,通常需要分辨率明显更高的 SAR 数据。最近的 SAR 传感器系统能够将分辨率降低到几分米,从而产生与现代亚米级光学系统相当的优质图像。这一点,加上全天候昼夜成像能力,使 SAR 成为一种理想的工具,特别是对于常规监测和测绘应用,在这些应用中,遥感数据的高可靠性至关重要。雷达图像包含的信息与从光学或红外传感器获得的图像完全不同。在光学范围内,物体表面的分子共振主要决定了物体反射率的特征,而在微波范围内,介电和几何特性与反向散射有关。因此,雷达图像强调了所观察地形的起伏和形态结构以及地面电导率的变化,例如,由
前言 通过电子弹道测量组 (ETMG) 应答器特设委员会,发起了一项编写 C 波段和 X 波段应答器的通用规范的努力,以满足大多数靶场的需求。这项工作将军用标准 (MIL-STD) 插值纳入 ETMG 或靶场安全组文档,以供将来参考。本文件的目的不是删除任何靶场的当前应答器功能,因为每个靶场都有自己独特的要求,需要最大的灵活性才能提供支持。例如,每个靶场的飞行认证测试和飞行前要求各不相同。参与的靶场将继续使用其现有库存,并可以参与交换计划,该计划将收集工作和非工作单元,以作为飞机应答器发行或供载人飞机使用。个别系列也可以参与更换计划,旧款产品可以换成新设计型号(但截至目前,此类更换计划尚不存在)。
PAR 为进场和着陆飞机提供准确的方位角和仰角位置。 1943 年,L3Harris 向美国陆军航空队提供了第一台 PAR,帮助飞行员在恶劣天气下安全着陆。我们的 PAR-2020 系列通过渐进式技术更新不断发展,提供最佳可用技术,具有长期、经济高效的可持续性。全球有 20 多个武装部队在使用 L3Harris AESA PAR。
PAR 为进近和着陆飞机提供准确的方位角和仰角位置。L3Harris 于 1943 年向美国陆军航空队提供了第一台 PAR,帮助飞行员在恶劣天气下安全着陆。我们的 PAR-2020 系列通过渐进式技术更新不断发展,提供最佳可用技术,具有长期、经济高效的可持续性。全球有超过 20 个武装部队正在使用 L3Harris 有源电子扫描阵列 (AESA) PAR。
摘要 — 奥地利空中交通管制局的空中交通管制员 (ATCos) 与德国航空航天中心 (DLR) 共同量化了自动语音识别与理解 (ASRU) 对工作量和飞行安全带来的好处。作为基本程序,ATCos 手动(使用鼠标)将所有许可输入飞机雷达标签。作为我们提出的解决方案的一部分,ATCos 由 ASRU 支持,它能够自动提供所需的输入。只有当 ASRU 提供不正确的输出时,才会提示 ATCos 进行更正。当 ATCos 由 ASRU 支持时,手动插入许可(即通过单击并选择屏幕上的正确输入)所需的总时间从 14 小时模拟时间内的 12,800 秒减少到 405 秒。鉴于早期的实验,通过 ASRU 减少雷达标签维护时间可能并不令人惊讶。但是,超过 30 倍的效果优于早期的结果。此外,本文还考虑了安全方面,即空中交通管制员在有和没有 ASRU 的情况下向飞机雷达标签提供错误输入的频率。本文表明,基于人工智能的 ASRU 系统足够可靠,可以集成到空中交通管制操作室中。
成像雷达是一种主动照明系统。安装在平台上的天线以侧视方向向地球表面发射雷达信号。反射信号(称为回声)从表面反向散射,并在几分之一秒后在同一天线(单基地雷达)上接收。
MSSR 模式 S 基于经过现场验证的技术和在 Indra ATM 产品中实施成功创新的丰富经验。这提供了性能、可靠性和对现有和未来法规的合规性,使您能够在航路或进近阶段管理空中交通。数字接收、基于 Web 的 HMI 和集成 ADS-B,以及其创新设计,使 MSSR 模式 S 成为世界上最先进、最强大的雷达之一。