01 获得由 MHRD/UGC 认可且具备 NET/GATE 资格的任何学院/大学颁发的数学一级硕士学位,研究生和研究生水平;或者获得由 MHRD/UGC 认可且具备 NET/GATE 资格的任何学院/大学颁发的数学和计算机科学一级硕士学位,研究生和研究生水平
卵子研究杂志。20,编号2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。 Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。 P. Giuria 1-710125都灵,意大利。 C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。P. Giuria 1-710125都灵,意大利。C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。C HYDERABAD大学海得拉巴大学500046的物理学学院。氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。这些模式的峰位置和FWHM经历了指示性变化。在不同暴露时间持续时间内具有激光功率的缺陷模式的强度比和(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖' - 𝐺𝐺𝐺𝐺)的变化分别表明边缘缺陷和氧化石墨烯的降低。这些结果扩大了对不同时间持续时间激光功率对氧化石墨烯特征的影响的理解。我们的研究提供了有关激光互动的定量信息。(2024年1月21日收到; 2024年4月8日接受)关键词:氧化石墨烯,缺陷,激光功率,拉曼光谱,平面内晶体大小(L a)1。简介氧化石墨烯是一种二维官能化透明岩片,含有连接在边缘和基础平面的功能分子的氧。氧化石墨烯已被广泛用于电化学超级电容器[1],生物医学[2],传感器[3],现场效应晶体管(FET)[4],燃料电池[5],锂电池[6],Polymer nanocomososes [7]。不同的方法,包括化学,热,水热,电化学和光化学还原,以减少官能团以实现石墨烯样结构,众所周知的石墨烯氧化石墨烯。通过去除不稳定的C = O键[8] Raman Spectroscoppy Analysis是一种非损害工具,可以从频谱参数中获得有关缺陷和疾病的知识,从而通过去除不稳定的C = O键来精确调整和量身定制缺陷[8],对缺陷进行了精确调整和剪裁,从而,对缺陷进行了精确调整和剪裁。通常,G波段是石墨烯片的特征,而D波段随着石墨烯片中的缺陷和疾病的增加而演变。通过对X射线衍射模式或样品的X射线光电光谱进行相应分析来量化拉曼光谱的变化来开发结构光谱相关性[9-11]。氧化石墨烯的拉曼光谱包含一阶带,其特征峰约为1350(D波段)和1580 cm -1(g波段),而在2700 cm -1左右的宽二阶频带。
我们目前正在研究所光与物质物理组量子信息与计算实验室招聘一名员工。该任命以合同形式进行。候选人将与研究所 LAMP 组量子信息与计算实验室合作一年,可能延长至三年或与项目同时完成(以较早者为准)。每年的延期将基于 RRI 进行的年度绩效评估。初始试用期为两个月。
Laura M de Kort,Masoud Lazemi,Alessandro Longo,Valerio Gulino,Henrik P Rodenburg等。使用X-Ray Raman谱学解密了纳米固体电解质中界面诱导的高LI和Na离子电导率的起源。高级能源材料,2024,10.1002/aenm.202303381。hal-04411755
h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
摘要使用带有电热模型的TCAD-Santaurus工具设计和优化了基于GAN纳米线的新垂直晶体管结构。具有准1D漂移区域的研究结构适用于在高度N掺杂的硅底物上与自下而上方法合成的GAN纳米线。对电性能的研究是各种Epi结构参数的函数,包括区域长度和掺杂水平,纳米线直径以及表面状态的影响。结果表明,优化的结构具有正常的阈值模式,其阈值电压高于0.8 V,并且表现出最小化的泄漏电流,州电阻较低,并且最大化的击穿电压。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。
该文章的此版本已被接受以供出版,在同行评审(适用)之后(如果适用),并且受Springer Nature的AM使用条款的约束,但不是记录的版本,并且不反映后接受后的改进或任何更正。记录版本可在线获得:https://doi.org/10.1038/s41564-024-01656-3
在她的指导下,在IEEE ISBI'24的纸上接受了实验实习生Ninad Aithal的几项成就;实验室实习生Ameiy Acharya在IEEE ISBI'24的纸上接受;实验室的实习生Ameiy Acharya先生凭借其标题为“基于图形的MCI和健康受试者分类的框架,使用fMRI时间序列”获得了最佳介绍奖。
具有亚微米和同时拉曼光谱能力的Mirage-LS光热红外(O-PTIR)显微镜提供了广泛的大分子特征,可在空间尺度上对材料和生物标本的材料标本<500nm,允许在IR光谱中与亚细胞分辨率在Raman和Raman中匹配的IR光谱,并允许与Raman匹配。Mirage-LS能够成像具有生命科学中多种应用的各种生物学和材料样品,包括癌症研究和药物输送,微塑料,聚合物等。
在这项研究中,我们开发了一个基于单光光学陷阱的表面增强拉曼散射(SERS)光氟分子指纹光谱检测系统。该系统利用单光束光学陷阱在光氟芯片中浓缩游离银纳米颗粒(AGNP),从而显着提高了SERS性能。我们使用COMSOL模拟软件研究了锥形纤维内的光场分布特性,并建立了MATLAB模拟模型,以验证单光束光学陷阱在捕获AGNP方面的有效性,证明了我们方法的理论可行性。为了验证系统的粒子捕获功效,我们通过实验控制了光学陷阱的On-Own状态,以管理颗粒的捕获和释放。实验结果表明,捕获状态中的拉曼信号强度明显高于非捕获状态,这证实了单光束光学陷阱有效地增强了光氟硅烷检测系统的SERS检测能力。此外,我们采用了拉曼映射技术来研究捕获区域对SERS效应的影响,表明激光捕获区域中分子指纹的光谱强度得到了显着改善。我们以10 -9 mol/l的浓度和农药Thiram的浓度成功地检测到了晶体紫罗兰色的拉曼光谱,并在10 -5 mol/L的浓度下进一步证明了单光束光学TRAP在增强分子手指纹状体识别能力的能力的能力。作为集成光电传感系统的关键组成部分,在本研究中开发的光捕获仪具有与便携式高功率激光器和高性能拉曼光谱仪的集成潜力。这种集成有望推进高度集成的技术,并显着提高光电传感系统的整体性能和可移植性。