结果和讨论:在总共617个共培养Calli中,21(3.4%)再生芽表现出三种不同的表型:白化,嵌合和浅绿色;与野生型非转化的再生芽相比。在白化芽中,总叶绿素含量大大降低,并且在嵌合芽中显着降低。在六个CAS9基因确认的再生芽中,两种芽表现出由于插入/缺失(Indels)和ACPDS靶点位置和周围的基于替代的突变而引起的白化表型。深度扩增子测序显示两个SGRNA之间的indel频率显着,范围从1.2%到63.4%,以及53.4%的替代频率。ACPDS基因的突变产生了可检测到的白化病表型,因此确定了ACPDS基因的成功编辑。这是第一次在洋葱中成功建立了CRISPR/CAS9介导的基因组编辑方案,而ACPD基因作为一个例子。这项研究将为研究人员提供进一步的洋葱基础研究和应用研究的必要动力。
3.1 KRAS 致癌基因是肺癌中最常见的突变基因。KRAS G12C 突变是最常见的突变,在英国占非小细胞肺癌 (NSCLC) 肿瘤的 12%。这种突变在非鳞状 NSCLC 中更常见,通常不会与其他已知突变(如 EGFR、ALK 和 ROS-1)同时发生。这些其他已知突变可能有可用的靶向治疗,但目前没有针对 KRAS G12C 突变的靶向治疗。KRAS G12C 突变阳性的局部晚期或转移性 NSCLC 患者通常接受化疗,这是一种非靶向治疗,会产生影响健康相关生活质量的不良反应。临床专家强调,KRAS G12C 突变阳性 NSCLC 患者的预后较差。临床和患者专家指出,该人群对有效且可耐受的治疗存在未满足的需求。他们还强调,缺乏靶向治疗方案可能会产生心理影响。这种疾病伴有难以治疗的症状,患者专家提交的意见强调了这些症状对患者及其护理人员的心理影响。临床和患者专家表示,针对非小细胞肺癌中 KRAS G12C 突变的靶向治疗将受到欢迎。委员会得出结论,针对 KRAS G12C 突变阳性局部晚期或转移性非小细胞肺癌的靶向治疗存在尚未满足的需求,这些治疗将带来身体和心理上的益处。
肿瘤甲状腺癌,BRAF非V600,NRA,联合免疫疗法和靶向治疗,病例报告。型甲状腺癌(ATC)是一种罕见的甲状腺癌,死亡率接近100%。BRAF V600和NRAS突变是ATC最常见的驱动因素。虽然可以通过BRAF靶向疗法治疗BRAF V600-Mutated ATC的患者,但没有有效的ATC治疗NRAS或非V600 BRAF突变。对于不可遗憾的驾驶员突变患者,免疫疗法提供了另一种治疗选择。在这里,我们提出了一个肿瘤PD-L1阳性(肿瘤比例评分为60%)和NRAS Q61R/ BRAF D594N突变的转移性ATC患者,该突变在PD-1抗体Sintilimab Plus Sintilimab Plus Sintilimab Plus血管生成抑制剂Anlotinib上进展。3类BRAF突变体D594N对MEK抑制剂Trametinib的抑制敏感,其致癌活性也取决于CRAF,BRAF抑制剂Dabrafenib可以抑制这种CRAF。由于这些原因,患者接受了达布拉尼,曲敏替尼和辛蒂利莫比的打捞治疗方案,这导致了完全的病理反应。据我们最大的了解,这是第一份关于与免疫疗法和靶向治疗结合结合的同时NRAS / BRAF非V600突变的ATC患者成功治疗的报告。需要进一步研究以解读dabrafenib/trametinib与PD-1抗体的结合的机制,克服了可能由并发的BRAF和NRAS突变介导的初始免疫疗法抗性。
一名 61 岁女性患者,因持续疲劳被诊断为右上肺叶转移性腺癌,伴有局部淋巴结转移、多发性肺转移和右额叶脑转移(根据 PET-CT 发现的临床分期:cT3 cN2 cM1c)。肿瘤 DNA 的下一代测序(Ion AmliSeq Colon and Lung Research Panel v2、Ion Torrent 平台、热点区域分析)显示 KRAS p.G12C (c.34G>T) 突变,但没有其他靶向改变。PD-L1 的免疫组织化学染色在肿瘤细胞中不到 1%。一线全身治疗采用顺铂、培美曲塞和帕博利珠单抗,总体获得部分缓解,包括脑转移完全缓解,2018 年 9 月开始使用培美曲塞和帕博利珠单抗维持治疗。2019 年 3 月,由于进行性多发性神经病变,停用培美曲塞。2019 年 6 月,患者肺部出现进展,因咯血而需要止血放射治疗,帕博利珠单抗也停用。单独的脑转移继续缓解。2019 年 11 月,患者肺部再次出现进展,并出现有症状的脑部进展,小脑蚓部出现新的病变,导致导水管受压和连续性脑积水。植入脑室腹腔分流术,小脑蚓部病变用立体定向放射治疗;进行性肺部病变用放射治疗;此外,由于病情稳定,且持续控制疾病超过一年,因此恢复使用派姆单抗治疗。然而,2021 年 2 月,患者小脑已知病变进展(临床意义不大),左脑室周围白质出现新转移,肺部进一步进展。2021 年 3 月开始使用多西他赛,肺部和脑部病变进展,右额叶和颞叶出现新病变,这是四个周期后的最佳反应(见图 1 治疗时间顺序示意图)。2021 年 6 月,开始口服 960 毫克每日 sotorasib 治疗。经过 6 周的 sotorasib 治疗后,不仅肺部,而且未治疗的脑转移瘤都出现了令人印象深刻的治疗反应,这种反应持续了 5 个月(见图 2)。由于全身进展,停止使用 sotorasib 治疗,并于 2021 年 11 月底开始使用吉西他滨治疗。2021 年 12 月初,患者出现症状性脑部进展,行为改变和精神萎靡,并进行了神经外科干预,包括开颅术和肿瘤切除术。吉西他滨的全身治疗持续到 2022 年 2 月,并因疾病进展而停止。患者于 2022 年 3 月接受培美曲塞进一步全身治疗(再次治疗),随后于 2022 年 4 月接受卡铂和紫杉醇治疗。此外,患者于 2022 年 4 月进行了全脑放射治疗。随着病情进一步进展,患者自 2022 年 5 月起接受最佳支持治疗。
当您通过我们的正常渠道工作时,AVSE 最能有效地满足您的需求。我们致力于尽最大努力及时专业地处理每个请求。收到您的请求后,服务台将对其进行评估,并将其分配到适当的专家领域以满足您的需求。服务台致力于为学生、员工和社区提供优质的支持和服务。我们努力以友好和及时的方式提供这些服务。所有发送到服务台的请求都会通过 Jira Service Management 进行分类和记录。记录后,请求将及时处理。虽然大多数请求都在服务台得到解决,但有些请求可能会在必要时上报给适当的专家/领域。报告给服务台的中断会立即传达给运营和企业系统管理团队,以进行进一步调查。
本文旨在通过研究两个最先进的生成模型(扩散模型和变压器)的适应来弥合这一差距,以在哈萨克州进行文本生成。扩散模型(例如denoising扩散概率模型)在英语的高质量和多样化的文本生成中显示出令人鼓舞的结果[2]。这项研究为哈萨克语和土耳其语的自然语言处理领域做出了宝贵的贡献,为确定语法类别提供了工具。它的优势在于使用机器学习算法和广泛的数据集,这些算法与语言处理的复杂性以及算法适用性的潜在局限性相平衡[3]。同样,在下游任务上进行了微调的经过验证的变压器在各种NLP基准测试中占主导地位[4]。尽管在释义数据集上进行了一些工作[5]。该研究重点介绍了基于样本的机器翻译的基本方面:确定句子之间的相似程度。这涉及将输入句子与数据库中的相应示例对齐,选择该句子的片段,然后对其进行调整或释义以产生预期的翻译[6]。所审查的文章介绍了搜索系统中信息检索技术的新的语言和算法解决方案的开发,考虑到语法和语义的元素,包括turkic文本[7]。该文档提供了总结哈萨克文文本的方法的详细描述[8],这些研究并不能解决我们解决的问题。此外,还有一些努力在哈萨克语[9]中定义语义上的单词[9],以及使用生成的预先训练的预先训练的变压器对哈萨克语文本生成的一些初步工作,THR研究涉及对哈萨克语的文本生成模型的经验评估,其特征在于其有限的资源和复杂的形态[10]。研究研究了哈萨克语的语法特征[11]。然而,这些作品都没有全面解决哈萨克(Hazakh)的文本发电挑战,这是一种低资源,形态上丰富的突厥语。
本演示文稿(“演示文稿”)由 TVS Supply Chain Solutions Limited(“公司”)编制,仅供参考,不考虑任何特定人士的具体目标、财务状况或需求,并非且其中任何内容均不得理解为关于购买或出售本公司或任何关联公司在任何司法管辖区的任何证券的邀请、要约、招揽、推荐或广告,或参与投资活动的诱因,并且其任何部分均不得构成任何合同、承诺或投资决策的基础或依据。本演示文稿不考虑也不提供关于任何人的具体投资目标或财务状况的任何税务、法律或投资建议或意见。在根据任何信息采取行动之前,您应该考虑信息与这些问题的适当性,特别是您应寻求独立的财务建议。本演示文稿及其内容为本公司和/或其附属公司的机密和专有财产,不得以任何方式将其任何部分或其主题直接或间接地使用、复制、复印、分发、共享、重新传输、总结或传播给任何其他人,或为任何目的全部或部分地出版。
...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。