回顾过去四年,我不禁感激这四年带给我的丰富。这很大程度上要归功于那些日复一日指导和陪伴我的人。我首先要感谢的是 Patrice 和 Emmanuel。感谢他们无微不至地教我如何进行研究和培养直觉。感谢 Patrice 教会我严谨的重要性,感谢你的科学建议,感谢你在所有项目中对我的指导。感谢 Manu 的共同努力,感谢你交流的热情、直截了当的深刻物理洞察力和你热情洋溢的态度。此外,如果没有很多人的帮助,这次冒险会困难得多。非常感谢 Denis,他教会了我所有关于制造的知识。他严谨的方法和对细节的关注是我所接受的最宝贵的教诲。感谢 Vishal,他制造并描述了自旋装置,他的技术帮助、科学洞察力和友谊在许多场合都至关重要。感谢 Leo,他构建了该装置的第一个版本,现在正在进行实验,他的乐于助人和坚韧不拔非常宝贵。感谢 Dan,他总是准备好帮助解决代码和未来的问题。感谢 Pief、Sebastian 和 Pascal 的技术支持和友好态度。如果没有合作者为其实现做出的贡献,这项工作就不可能实现。感谢 Thomas Schenkel 提供铋样品,感谢 Audrey 参与科学讨论,给予我支持和鼓励。感谢 ENS 的合作者和朋友:Raph、Zaki、Samuel、Ulysse 和 Marius,他们开发了光子计数器的第一个版本,并在许多场合给予了卓有成效的帮助。最后,感谢 Andrea、Eugenio、Simone、Mattia 以及 Marie-Curie QuSCo 项目的所有朋友和成员,这项工作就是在这个框架下实现的。非常感谢 Bartolo 和 Fernanda,同事、办公室伙伴和朋友,他们与我分享了这次冒险的很大一部分。回想起你们营造的快乐氛围,我仍然面带微笑。感谢所有新老同事的友好和帮助:感谢 Eric,感谢你提出的深入的物理问题和友好态度。感谢 Marianne,感谢你在困难时期的精神支持和设置方面的帮助。感谢 Boris,感谢你在实验室的善意和支持。感谢 Nicolas 的默默同情、务实意识和所有“午餐”呼叫。感谢 Anil 的科学讨论和测量帮助。感谢 Milos 的快乐态度和技术支持。感谢 Yutian、Zhiren、Cyril、Maria 和 Louis,因为与你们讨论并有你们在身边感觉就像家人一样。感谢所有 Quantros 的友好环境和丰富的科学讨论。非常感谢 Daniel Esteve,这些年来他的科学支持和鼓励是这条道路上至关重要的。
胎儿大脑巨细胞病毒感染的补充数据:怀孕期间摄入阿司匹林会削弱后代的神经发育发病机制 Sarah Tarhini 1 , Carla Crespo-Quiles 1# , Emmanuelle Buhler 1 , Louison Pineau 1 , Emilie Pallesi- Pocchard 1 , Solène Villain 1 , Saswati Saha 2 §, Lucas Silvagnoli 1 , Thomas Stamminger 3 , Hervé Luche 4 , Carlos Cardoso 1 , Jean-Paul Pais de Barros 5 , Nail Burnashev 1 , Pierre Szepetowski 1 *, Sylvian Bauer 1 * §当前地址: #Alicante Neuroscience Institute, Miguel Hernandez University, CSIC, San Juan de Alicante, Alicante, Spain; 生理学和病理生理学研究所,约翰内斯古腾堡大学,美因茨,德国; §Argenx France SAS, 92130 Issy-Les-Moulineaux, France 1 INMED、INSERM、艾克斯-马赛大学,法国马赛。 2 TAGC、INSERM、艾克斯马赛大学图灵生命系统中心,法国马赛。 3 德国乌尔姆大学病毒学研究所。 4 CIPHE、PHENOMIN、INSERM、CNRS、艾克斯-马赛大学,法国马赛。 5 DiviOmics 平台,UMS 58 BioSanD,法国第戎勃艮第孔泰大学。 *通讯作者:Bauer 博士,地中海神经生物学研究所 (INMED)、Inserm UMR1249、Parc Scientifique de Luminy, BP13, 13273 Marseille Cedex 09, France。电话:+33 (0)4 9182 8156;电子邮件:sylvian.bauer@inserm.fr Szepetowski 博士,地中海神经生物学研究所 (INMED),Inserm UMR1249,Parc Scientifique de Luminy,BP13,13273 Marseille Cedex 09,法国。电话:+33 (0)4 9182 8111;电子邮件:pierre.szepetowski@inserm.fr
缩写:6-OHDA,6-羟基果胺; ASD,自闭症谱系障碍; BTBR,Black和Tan Brachyury; Cacna1c,钙电源门控通道亚基α1c; CB1-KO,大麻素受体1敲除; CB1R,大麻素类型1受体; CNN,卷积神经网络; CNTNAP2,接触蛋白相关的蛋白质样2; CPP,条件的地方偏好; D1和D2样受体,多巴胺1和2喜欢受体; DB,分贝; DRT,多巴胺替代疗法; ECS,内源性大麻素系统; FM,频率调制; FMR1,脆弱的X精神迟缓综合征1; FMRP,脆弱的X智障蛋白; FXS,脆弱的X综合征; hie,低氧缺血性脑病; HS,小时; IGF-2,胰岛素 - 喜欢生长因子2; KHz,Kilohertz; ko,淘汰; L-DOPA,L-3,4-二羟基苯胺; LPS,脂多糖; MCAO,中大脑中动脉阻塞; MIA,母体免疫激活; MLX,Meloxicam; MP,多层感知者; mper1,鼠标周期1; MS,毫秒; mupet,小鼠超声剖面提取; namb,Ambiguus核; NDD,神经发育障碍; NF-κB,核因子kappa b; NLGN,神经素; nts,核科solitarius; P2X4R,嘌呤能P2X受体4; PAG,灰灰色; PD,帕金森氏病; PND,产后日; PTSD,创伤后应激障碍; RF,随机森林; SVM,支持向量机; Ube3a,泛素蛋白连接酶E3A; USV,超声波发声; Waaves,Wav-File自动化的声音环境分析。 wt,野生型。
大脑皮层在人类和其他动物对不可预测的地形变化的适应性中起着重要作用,但是在此过程中,皮质区域之间的功能网络知之甚少。为了解决这个问题,我们训练了6只老鼠,视力阻塞,在带有不平衡区域的跑步机上双胎行走。全脑电脑电图信号通过32通道植入电极记录。之后,我们使用时间窗口扫描所有大鼠的信号,并使用相位延迟索引量化每个窗口中的功能连接。最后,使用机器学习算法来验证在检测大鼠运动状态时动态网络分析的可能性。我们发现,与步行阶段相比,在制备阶段的功能连接水平更高。此外,皮质更加注意控制肌肉活动需求更高的后肢的控制。功能连接的水平较低,可以预测前方的地形。大鼠意外地与不均匀的地形接触后的功能连通性突发,而在随后的运动中,它明显低于正常行走。另外,分类结果表明,使用多个步态阶段的相位延迟指数作为特征可以有效地检测步行过程中大鼠的运动状态。这些结果突出了皮质在动物对意外地形适应中的作用,并可能有助于推进运动控制研究和神经植物的设计。
目的:大鼠发出的超声波发声(USV)可能反映了情感状态。具体来说,在少年比赛中发出的50 kHz呼叫与积极影响有关。鉴于抑郁症的特征是该领域的深刻变化,我们提出USV调用可能配置了评估抑郁状态的合适工具。利用Flinders敏感线(FSL),这是一种已建立的抑郁症动物模型,我们评估了大鼠在挠痒痒期间发出的USV调用,这是基于少年大鼠粗糙和摔倒的游戏的程序。方法:少年FSL大鼠及其控制对应物,抗火焰队的耐药线(FRL)和Sprague Dawley,被提交挠痒痒的会议,以模仿大鼠玩耍的行为。从PND21开始,每天将大鼠挠痒痒6周。记录了挠痒痒的会话,以进一步对50 kHz调用的声学分析。结果:在所有应变中挠痒痒增加了50 kHz的呼叫。FSL大鼠发出的呼叫多于控制菌株,并显示出更高数量的扁平组合呼叫。结论:挠痒痒是诱导50 kHz USV调用的强大方法。分析在挠痒痒期间发出的USV调用是一种适合研究与抑郁症相关的情感状态的方法。FSL大鼠没有出现Anhedonia,而是更高的奖励敏感性,这可能是其压力脆弱性的基础。
致癌大鼠肉瘤病毒 (RAS) 突变的流行使得 RAS 成为癌症治疗的热门靶点。在研究 RAS 突变之后,癌症分子生物学方面取得了重大发现。这些发现对于塑造靶向癌症治疗时代至关重要,直接靶向 RAS 或下游 RAS 效应物(如 Grb2 和 MAPK)是可能的。法呢基转移酶等新型药物可直接结合和隔离 RAS。虽然这些新药物和新方法在临床前和临床研究中显示出良好的前景,但 RAS 信号的复杂性和强大的自适应反馈潜力仍然带来巨大挑战。因此,靶向疗法的开发需要详细了解特定癌症对 RAS 突变的特性和依赖性。本综述概述了 RAS 突变及其与癌症的关系,并讨论了它们作为治疗靶点的潜力。
肥胖和超重状况分别或与II型糖尿病(T2DM)共同发生,现在在全球范围内发生,整个工业化社会的发病率令人震惊。1-4无序的胃生理学是糖尿病中的常见观察结果,包括T2DM早期快速排空的过程和T2DM和类型1型的后期,胰岛素依赖性糖尿病(IDDM)的过程。5肽激素淀粉蛋白与胰岛素共同分泌,以响应餐食,并促进代谢作用,这些作用通常与胰岛素的互补作用,并且两种激素都在T2DM和胰岛素抵抗中无序。6此外,加速胃排空的常见的SIRT-1动作也可能导致胃功能的失调,包括T2DM中的食欲。7-9因此,胰岛素分泌和组合调节功能的损害通常也会以Amylin分泌和SIRT1动作的畸变反映。6-9包括淀粉蛋白的各种激素作用中,激素通常有助于通过位于胃上皮的Antrum上的淀粉蛋白受体的胃排空生理过程,在此有效地延迟了胃空的一致性和时机。6激活后,链淀粉蛋白受体调节酸辣椒消化剂从胃到近端十二指肠的时机和过渡,然后消化剂可以暴露于腔葡萄糖酶和胰腺中和成分和消化酶。6相比,在IDDM中,因此,与SIRT1作用共同调节淀粉蛋白受体活性的失调可能导致T2DM和IDDM糖尿病形式的胃功能失调。5-9此外,肥胖和T2DM的高胰岛素血症和高氨基血症至少在某种程度上导致了胰岛素和氨基蛋白耐药性现象,因为它在这些条件下通过激素受体受体活性的原发性或次要下调在这些条件下发生。
缩写:6-OHDA,6-羟基果胺; ASD,自闭症谱系障碍; BTBR,Black和Tan Brachyury; Cacna1c,钙电源门控通道亚基α1c; CB1-KO,大麻素受体1敲除; CB1R,大麻素类型1受体; CNN,卷积神经网络; CNTNAP2,接触蛋白相关的蛋白质样2; CPP,条件的地方偏好; D1和D2样受体,多巴胺1和2喜欢受体; DB,分贝; DRT,多巴胺替代疗法; ECS,内源性大麻素系统; FM,频率调制; FMR1,脆弱的X精神迟缓综合征1; FMRP,脆弱的X智障蛋白; FXS,脆弱的X综合征; hie,低氧缺血性脑病; HS,小时; IGF-2,胰岛素 - 喜欢生长因子2; KHz,Kilohertz; ko,淘汰; L-DOPA,L-3,4-二羟基苯胺; LPS,脂多糖; MCAO,中大脑中动脉阻塞; MIA,母体免疫激活; MLX,Meloxicam; MP,多层感知者; mper1,鼠标周期1; MS,毫秒; mupet,小鼠超声剖面提取; namb,Ambiguus核; NDD,神经发育障碍; NF-κB,核因子kappa b; NLGN,神经素; nts,核科solitarius; P2X4R,嘌呤能P2X受体4; PAG,灰灰色; PD,帕金森氏病; PND,产后日; PTSD,创伤后应激障碍; RF,随机森林; SVM,支持向量机; Ube3a,泛素蛋白连接酶E3A; USV,超声波发声; Waaves,Wav-File自动化的声音环境分析。 wt,野生型。
囊性纤维化(CF)是由CF跨膜电导调节剂(CFTR)基因突变引起的罕见疾病。在法国,超过80%的CF患者是纯合或杂合状态中F508DEL突变的载体。f508del导致过早降解但其他功能性蛋白质的合成。现在有很大的兴趣实施CFTR校正器,旨在营救顶部膜中的F508DEL。有些处于临床状态,但仍处于适度效率。需要使用相关的CF动物模型来对这些新化合物进行临床前研究。CF小鼠模型表现出几种相关的疾病,但无法模仿严重的肺部疾病:因此,已经开发了其他模型作为猪和雪貂中的CF。这两个物种都表现出有趣的气道障碍,但它们需要专门的设施和管理,这些设施和管理不容易获得,并带来了高昂的成本。此外,由于其剧烈的肠道疾病,只有少数动物达到成年年龄。最近,已经开发出了一条敲除(KO)大鼠,该大鼠在人类受试者中发现了许多CF表型的特征,包括气道粘液产生,气管发育,气道表面和周围液体液深,鼻粘液,牙齿,牙齿,牙齿,牙齿牙齿的缺陷以及VAS deferens的参与。大鼠是CF肺部疾病的有吸引力的模型,因为与小鼠不同,但与人类相似,它们在整个气管中都会形成广泛的粘膜下腺,直至支气管水平。尽管如此,CFTR-KO大鼠不允许研究校正器。F508DEL大鼠将通过Nantes的Trip Platform实现。因此,我们旨在使用F508DEL突变和单链寡脱氧核苷酸(SSODN)开发CF大鼠模型,该方法将与群集的定期散布的短palindromic重复(CRISPR)共同注入。这种新模型将使我们能够加深对由F508DEL突变引起的CF生理病理学的知识,尤其是关于肺部疾病和其他CFTR相关异常的知识。此外,F508DEL大鼠模型将使我们能够测试校正器对另一种模型中CF病理的影响,从而提供了有关其功效,代谢和毒性的有价值的补充数据。这种F508DEL大鼠模型将是世界上第一个模型,并构成了CF研究的重大进展。
图1 - 周围单核细胞在 +7h至+6天之间浸润海马,并分化为脑单核细胞巨噬细胞。a-d。将氟YG羧酸羧酸盐微球(FYG,0.5μm)注射到SE后尾静脉6H。除非循环单核细胞用克罗膦酸盐脂质体(1 ml/100g; i.p.)在SE之前进行管理。大鼠被牺牲1D,3D和6D。检测CD11b(红色,CBL1512Z,Millipore)和FYG(绿色)在1天(b,cap =毛细血管),脑单核细胞 - 摩托噬细胞浸润单核细胞中,在-Se后3天(C)和细胞在细胞中延伸,并在hilus in-hilus in-hilus in-se(c)和细胞中延长。比例:20 µm。e-n。CD11b(E-I,Cyan,CBL1512Z,Millipore)和CD68(J-N,Green,MCA341GA,Bio-Rad)在SE之后的齿状回中进行了免疫(Ctrl,n = 6; SE+7H,se+7H,n = 4; se+1d,n = 4; se+1d,n = 5; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d;比例:50µm。圆形的CD11b-POSI] VE细胞(J)和CD68-POSI] VE细胞(N)在齿状回中被量化。单向方差分析后,通过Tukey的测试对数据进行分析。数据表示为平均值 + SEM。*:vs. Ctrl。***,p <0.001; ****,p <0.0001。