叶下珠属植物因其生态和治疗意义而闻名。准确识别这些物种对于保护和研究目的至关重要。由于植物的表型可塑性以及在检测植物产品中的替代品或掺假物方面存在挑战,传统的分类学鉴定往往不够完善。因此,通过 DNA 条形码进行分子鉴定已成为草药产品质量控制和国际草药贸易的新标准。本研究使用 DNA 条形码工具来识别印度叶下珠属物种,重点关注 nr 内部转录间隔区 2 (ITS2) 和叶绿体 rbcL 基因。系统发育分析显示高度的遗传相似性和很强的系统发育关系。这些发现证实了与全球同类的遗传亲缘关系,突出了进化模式。ITS2 区域的结构使用最小自由能计算来验证物种鉴定。这项研究展示了如何将 rbcL 基因分析与基于 ITS2 的 DNA 条形码相结合来准确识别印度叶下珠属物种,这种方法增强了这些宝贵植物资源的可持续利用,确保了产品质量,最大限度地减少了掺假,并支持生物多样性保护。
东非医学杂志卷。100号2023年1月1日,使用ITS2和RBCL标记物用于茄科种类识别的DNA条形码kathryn Wanjiku Nderitu,Nairobi大学科学与技术学院生物化学系,P。O.box 30197-00100肯尼亚,精灵阿格尔,科学技术学院,内罗毕大学科学技术学院,P。O。box 30197- 00100,肯尼亚,以西结·梅查(Ezekiel Mecha),内罗毕大学科学技术学院生物化学系框30197- 00100肯尼亚,阿顿nyachieo,灵长类动物研究所,Karen -Nairobi,P。O.框24481- 00502,肯尼亚。通讯作者:内罗毕大学生物化学系Kathryn Wanjiku Nderitu,P。O.框30197 -00100,肯尼亚内罗毕。电子邮件:knderitu276@gmail.com
自然界分布稀疏的树突属是最大的兰花科之一。DNA条形码可能是快速,准确鉴定树突物种的最佳选择。本研究的目的是使用DNA条形码技术来描述树突物种。在这里,我们使用了dendrobium sp的标本。从Makawanpur的Brindaban植物园(540 m ASL)收集为测试对象。我们从标本中放大并测序了三个叶绿体基因座,RBCL(Rorose-1,5-双磷酸羧化酶),MATK(成熟酶K)和PSBA-TRNH(基因间间隔)。我们从NCBI中检索了十二个质体序列,代表了六种树枝状物种(D. Candidum,D。Crepidatum,D。Chrysanthum,D。Denneanum,D。Fimbriatum和D. Moschatum)在尼泊尔报道。同样,还检索了一个质子质体的质体胶质体,以用作组外。从每个登录中提取RBCL,MATK和PSBA-TRNH的各个对齐序列。使用Mega X的最大似然方法进行进化分析。结果表明,与用单个基因座序列生成的序列相比,与所有三个基因座(RBCL,MATK和PSBA-TRNH)的组合序列产生的进化树更好。但是,需要其他标记才能提高准确性。
Withania Coagulans是印度的重要药用植物,从东地中海分散到南亚,但W. coagulans通常会被其他Withania物种误认为。准确地鉴定出具有药物重要的植物物种有助于其在医学中使用,并有助于保护全球受威胁或濒危植物的下降。目前的研究旨在使用五个在ICAR-ANAND的W. Coagulans的样本中使用五个遗传标记(RBCL,MATK,ITS,ITS,PSBA-TRNH和RPOB-TRNCGAR)为W. coagulans创建条形码。研究结果证实,PSBA和RBCL是研究W. ogulans的更好的条形码,即使改变地理位置,它也显示出100%的保护,而基因基因座RPOB,ITS和MATK帮助区分了Solanaceae家族的不同演变。它的GC含量最高,WCNB1的GC含量最高,WCNB2的GC含量为66.9%。与其他遗传标记相比,最大似然RPOB标记给出了最高的概率值(–889.38),其次是RBCL(–967.83)。研究结论将在药物领域使用,以开发基于DNA的W. cogulans植物的鉴定,以指出植物收集时的掺假。这项工作提供了对基于分子的识别和对W. ogulans的身份验证的见解。
四个子属(Monogynella,Pachystigma,Cuscuta和Grammica)。C.上皮和欧洲梭菌是库斯库塔亚属的成员。他们缺乏一个红外区域,有两个反转。此外,23种库斯库塔物种的叶绿体基因组及其基因组成的长度有很大的变化。大多数还原的叶绿体基因组失去了几种光合基因(NDH,RPO,PSA,PSB,PSB,PET和RBCL),因此逐渐降低了其光合作用的能力。这项研究不仅会发现可应用的潜在分子标记物,以识别属于四个亚属的物种,还可以指导
分类条形图,包括在四个基因座:16SV4上确定的前10个最丰富的属(或最低分类); 18SV1V2; 18SV8V9和RBCL用于水(A)和生物膜(B)样品。湖泊分为五个区域,与中部地区和西部(M&W),东部(E),西南(SW)和东南(SE)相对应。调色板不代表各个地块或样本类型之间的分类组,而是将大多数(蓝色)到最少(红色)的分类单元安排。每个湖泊的分类小号在图S5中。信用:环境DNA(2025)。doi:10.1002/edn3.70058
自成立以来,它是一种雄心勃勃的全球生物识别系统[1],DNA条形码(使用标准化的基因片段作为物种识别的内部标签)已将自己确立为生物多样性科学中的重要方法,并发表了12,000多篇论文(Web of Science搜索“ DNA” DNA“ DNA”和“ Barodod*6月2021年)。Hebert和合作者的最初建议推荐了动物的线粒体细胞色素C氧化酶I(COI)标记。然而,对于植物和真菌,已经提出了其他更有效的标记物,例如Maturasek(MATK)和核糖二磷酸羧化酶大亚基(RBCL)胆固醇成形剂标记物用于流量的植物[2] [2]。已建议使用几种标记为硅藻的DNA条形码,例如,从5.8S + ITS-2 [3]到RBCL [4],但对这些分类单元的研究受到限制。对于真菌,它已被广泛接受[5];但是,它的实施也有几个问题,特别是在某些水生物种中[6],尽管它很重要,但我们发现了六篇DNA条形码水生真菌的论文。DNA条形码已被反复证明是一种生物多样性测量方法的方法,显示了与传统分类法的高度率,例如,薄荷和鸟类和鸟类[7-10] [7-10],而其作为生物差异科学的预测工具的能力也很快就变得显而易见,刺激了新的框架框架。在这里,已经观察到了一些引人注目的多样性示例[14,15],并且在众多水生生态系统中已经描述了类似的趋势。目前,DNA条形码可以加速生物多样性库存,并帮助许多国家 /地区的分类学家数量减少。很早就确认了数据共享和协作研究潜力的重要性,从而创建了生命数据系统的条形码(BOLD)[16]。序列数据可以与详细的标本元数据和照片相关联,支持痕量文件,最重要的是博物馆收藏中的保证标本[16]。
想要了解更多有关该领域的国际努力吗?在过去的二十年里,科学界做出了相当大的努力来扩充用于物种鉴定的 DNA 参考库。这项工作主要由国际生命条形码计划 ( https://ibol.org/ ) 推动,该计划最初侧重于 cox1 基因区域。生命条形码数据系统数据库 (BOLD) 包含该基因区域的 970 多万条公共记录 ( http://www.boldsystems.org/index. php/databases )。除了 cox1,其他常用作 DNA 条形码的基因区域包括 12S、16S、18S、23S、rbcL 和 tufA。最大的 DNA 条形码公共存储库是 GenBank 序列数据库,该数据库由美国国家生物技术信息中心作为国际核苷酸序列数据库合作组织 ( https://www.ncbi.nlm.nih.gov/ genbank/ ) 的一部分维护。
大藻的生长取决于生物学上可用的氮,例如铵和硝酸盐,使氮是大藻类最常见的生长限制因素。然而,表面微生物在促进氮转化和改善氮利用中的作用尚不清楚。在这项研究中,从U. fasciata的表面分离出228种细菌菌株,高吞吐量测序揭示了不同氮浓度下表面细菌群落组成的显着转移。关键细菌家族(如杜鹃花科和黄酮科)被确定为氮循环必不可少的。网络分析表明,杜鹃花科和黄酮科是微生物相互作用的中心节点。一个合成微生物群落(Syncom2),包括四种菌株,显着增加了U. fasciata的生物量,氮和磷的获取,其可溶性糖,蛋白质和叶绿素A水平升高了23.9-49.2%。定量逆转录聚合酶链反应(RT-QPCR)分析表明,与未经处理的对照植物相比,Syncom2增强了与光合作用相关的关键基因的表达(RBCL,1.04倍),脂质生物合成(ACCD,11.21-折叠)和生长群量path(ACCD,11.21-倍)(wer)(螺旋)。这些发现表明,Syncom2通过改善营养的获取和激活与生长相关的基因来促进U. fasciata的生长。
<实用方法>肺(左上和下叶,右上和下叶),肾脏(左肾脏,右肾脏),肝脏和脾脏被从溺水的身体中取出。将每个器官切成30 mg,将其浸入100 L提取物SYBRGREEN提取物N-Amp™Plant PCR试剂盒(美国Sigma-Aldrich)中,并在95°C孵育10分钟。之后,使用浸泡解决方案作为模板进行实时PPCR。实时PCR的反应混合物(总量为20·L)如下:模板4·L,Sybrgreenextract- n-amppcrReadyMix 10·L,底漆(前向,反向)2·l,引用1·L,rnaseednasefree Water 1·L 1·L。当前生产的引物是Nitzschia 18 S RRNA,Fragilariaα-微管蛋白,Navicula IBP,Naviculaβ-肌动蛋白,Fragilariaβ-微管蛋白,RBCL和23 S rRNA,靶向生活在许多海洋和河流中的植物Planchon。在上述底漆被证明是有用的之后,我们计划为针对海洋和河流(例如海水Chaetoceros)的浮游植物物种准备底漆,并试图估计溺水位置。这使得可以在一定程度上恢复在溺水中发现的浮游植物的物种组成。作为对照,从发现溺水物体的位置收集水,并检查放大效率是否有差异。最后,我们认为,通过创建一个麦克风阵列,其中排列了多个植物浮游生物的DNA部分序列,我们可以以高精度恢复浮游生物物种。