中东呼吸综合征冠状病毒 (MERS-CoV) 是一种人畜共患的β冠状病毒,可导致人类严重且通常致命的呼吸道疾病。MERS-CoV 刺突 (S) 蛋白是病毒融合剂,也是中和抗体的靶标,因此一直是疫苗设计工作的重点。目前尚无针对 MERS-CoV 的获批疫苗,只有少数候选疫苗进入 I 期临床试验。我们利用计算设计的蛋白质纳米颗粒平台开发了 MERS-CoV 疫苗,该平台已生成针对各种包膜病毒的安全且具有免疫原性的疫苗,包括针对 SARS-CoV-2 的获批疫苗。展示 MERS-CoV S 衍生抗原的双组分蛋白质纳米颗粒可诱导强大的中和抗体反应,并保护小鼠免受小鼠适应性 MERS-CoV 的攻击。电子显微镜多克隆表位图谱和血清竞争试验揭示了由显示融合前稳定的 S-2P 三聚体、受体结合域 (RBD) 或 N 端域 (NTD) 的免疫原引起的主要抗体反应的特异性。RBD 纳米颗粒疫苗引发针对 RBD 中多个非重叠表位的抗体,而由基于 S-2P 和 NTD 的免疫原引发的抗 NTD 抗体则聚集在单个抗原位点上。我们的研究结果证明了双组分纳米颗粒候选疫苗对 MERS-CoV 的潜力,并表明该平台技术可广泛应用于 betacoronavirus 疫苗开发。
迫切需要为亚洲、非洲和拉丁美洲的中低收入国家研发安全且负担得起的 COVID-19 疫苗。此类疫苗依赖于重组蛋白疫苗等成熟技术,以促进其向新兴市场疫苗制造商的转移。我们的团队正在开发一种双管齐下的方法来推进重组蛋白疫苗,以预防由 SARS-CoV-2 和其他冠状病毒感染引起的 COVID-19。一种疫苗基于酵母衍生的(毕赤酵母)重组蛋白,由明矾上配制的 SARS-CoV 的受体结合结构域 (RBD) 组成,称为 CoV RBD219-N1 疫苗。这种疫苗有可能用作针对 COVID-19 的异源疫苗。第二种针对 COVID-19 的疫苗也在使用 SARS-CoV-2 的相应 RBD 进行推进。第一种抗原已经按照现行良好生产规范 (cGMP) 制造,因此在装瓶和进行所需的良好实验室规范 (GLP) 毒理学测试后,“随时可以”进入临床试验。其对 SARS-CoV-2 交叉保护的潜在功效的证据包括使用多克隆和单克隆抗体进行的交叉中和和结合研究。支持其安全性的证据包括我们在小鼠攻毒模型中使用致死性小鼠适应性 SARS 毒株进行的内部评估,结果表明 SARS-CoV RBD219-N1(吸附到氢氧化铝上时)不会引起嗜酸性肺病理。总之,这些发现表明,基于 RBD 的重组蛋白疫苗值得进一步开发,以预防 SARS、COVID-19 或其他可能引起大流行的冠状病毒。
Actraphy在失眠症和昼夜节律睡眠效果(CRSWD)中具有巩固的作用,最近的研究强调了使用行动术用于发作性睡病和REM睡眠行为障碍(RBD)。本综述旨在总结过去十年中有关使用行为的研究的研究结果。三十五项研究被证明是符合条件的,并分别分析了失眠症,睡病和RBD的结果。actraphy表明始终将失眠患者与健康对照组区分开。此外,已经证明了先进的分析技术的应用既可以提供对失眠和睡眠误解的独特见解,又可以改善在睡眠期内检测到觉醒的特定行为。关于发肠病病毒,几项研究表明,行动术可以检测到特殊的睡眠/唤醒干扰以及药物治疗的作用。最后,尽管RBD患者的研究数量仍然有限,但可用的证据表明活动模式的幅度降低,睡眠节奏失调和白天嗜睡。因此,应进一步探讨这些标记作为表容器的预测指标的潜在用途。总而言之,定量算法在考虑使用临床睡眠医学中使用Attraphaphy的可能性来诊断,监测和遵循CRSWD以外的其他睡眠障碍时产生了重新兴趣。©2023作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
使用数据估计。5。做出最佳预测和预测模型。模块:1个基本统计3小时描述性统计:中心趋势,分散,偏度和峰度的度量 - 概率:条件概率模块:2个小样本测试5小时参数,统计参数,采样分布,采样框架,单个平均平均值,双平均值,f-测试,f-测试,f- f-的良好性,f- chi和bin fifiance fifcians fifiancials fifiance fifiance fifiance fit(bin)卡方检验的属性独立性。模块:3个大样本测试4小时z-单比例,两个比例,单个平均值,双平均值,相关系数的测试,Z-测试模块的某些应用:4实验设计4小时的方差分析 - 一条和两种方式分类 - 实验设计原理,CRD -RBD -RBD -LSD。
Abdala 是一种由毕赤酵母生产的 COVID-19 疫苗,基于 SARS-CoV-2 刺突的受体结合域 (RBD)。Abdala 目前已获准在多个国家使用,临床试验证实了其在预防重症和死亡方面的安全性和有效性。尽管毕赤酵母被用作基于蛋白质的疫苗的表达系统,但酵母糖基化在免疫原中仍然基本未被表征。在这里,我们表征了 N-糖结构及其在 Abdala 上的附着位点,并展示了与等效的哺乳动物衍生 RBD 相比,酵母特异性糖基化如何降低与 ACE2 受体和受体结合基序 (RBM) 靶向抗体的结合。受体和抗体结合的减少归因于 N-糖基化导致的构象动力学变化。这些数据强调了糖基化在疫苗设计中的关键重要性,并展示了单个糖如何通过蛋白质结构动力学影响宿主相互作用和免疫识别。
BVB模型提出,在LBD的大多数情况下,第一个病理α-突触核蛋白聚集体在肠道或嗅球中形成(图1)4,10-13。在身体优先的LBD中,路易病病理学起源于肠道的肠神经系统,并通过副交感神经迷走神经和交感神经自主神经纤维侵入大脑。这些身体优先的患者通常会在临床诊断前几年出现自主症状和REM睡眠行为障碍(RBD)。相比之下,大多数具有大脑优先LBD的病例是在鼻子的嗅觉上皮触发的,Lewy病理学通过嗅觉神经侵入大脑。通过这种途径,病理可以更快地到达多巴胺能细胞,因此脑率先LBD的前瞻相位较短。脑前患者通常在诊断前不会出现自主问题或RBD,但是大多数患者会在诊断后出现这些症状;但是,大多数人将在后来出现这些症状,因为扩散病理不可避免地会影响LBD晚期阶段的神经系统的所有部位。因此,尽管身体和脑前患者的开始差异很大,但随着疾病的发展,他们变得越来越相似。
- Bryan Briney(Briney@scripps.edu)-Wyatt J. McDonnell(通讯@10xgenomics.com)摘要开发疫苗和治疗剂的开发,这些疫苗和治疗剂对已知和新兴的冠状病毒广泛有效,这是紧迫的优先事项。当前开发泛病毒对策的策略主要集中在冠状病毒尖峰蛋白的受体结合结构域(RBD)和S2区域。目前尚不清楚N末端结构域(NTD)是否是通用疫苗和广泛中和抗体(ABS)的可行靶标。此外,许多靶向RBD的ABS已被证明容易受病毒逃生的影响。我们使用多重的单位杆编码抗原在高通量单细胞工作流程中筛选了Covid-19幸存者和疫苗的循环B细胞库,以分离9,000多个SARS-COV-2-特异性单氯基ABS(MABS),从而使SARS-COV-COV-COV-2 SPECICIDIC ABSEIDICABERIDIC ABSIDICIDICABSIFICICADEIDIC。我们观察到个体之间的许多克隆聚结的实例,这表明AB反应经常在相似的遗传溶液上独立汇聚。在回收的抗体中是TXG-0078,这是一种公共中和的mAB,它结合了冠状病毒尖峰蛋白的NTD超级站点,并识别出多种α-和β-核纳病毒的收集。TXG-0078实现了其出色的结合宽度,同时利用相同的VH1-24可变基因特征和重型链的结合模式在其他NTD超级特异性特异性中和中和腹肌中可见,具有较窄的特异性。我们还报告了CC24.2的发现,CC24.2是一种泛核病毒中和MAB,它针对新型的RBD表位,并针对所有测试过的SARS-COV-2变体(包括BQ.1.1.1和XBB.1.5)显示出相似的中和效力。 TXG-0078和CC24.2的鸡尾酒提供了针对SARS-COV-2的体内挑战的保护,这表明将来可能在耐种的治疗性AB鸡尾酒中使用,作为泛环病毒疫苗设计的模板。我们还报告了CC24.2的发现,CC24.2是一种泛核病毒中和MAB,它针对新型的RBD表位,并针对所有测试过的SARS-COV-2变体(包括BQ.1.1.1和XBB.1.5)显示出相似的中和效力。TXG-0078和CC24.2的鸡尾酒提供了针对SARS-COV-2的体内挑战的保护,这表明将来可能在耐种的治疗性AB鸡尾酒中使用,作为泛环病毒疫苗设计的模板。
本研究的目的是调查在用基于 mRNA 的疫苗进行加强免疫后 6-17 个月内单个群体对 SARS-CoV-2 感染的免疫保护特征。结果表明体液和细胞免疫对疫苗效力的影响。值得注意的是,在加强免疫之前,中和抗体滴度被发现是相当可靠的保护相关因素。然而,这种预测能力在加强免疫后基本丧失。这种丧失似乎是由于加强免疫后体液免疫反应的关键重塑。我们的研究结果支持以下假设:对病毒刺突蛋白受体结合域 (RBD) 的保守和非保守表位的免疫对于最佳的长期保护 Omicron 感染至关重要。虽然对保守表位的免疫可能提供交叉变异保护,但针对非保守 RBD 表位的抗体在实现最大保护方面起着关键作用。这些观察结果强调了重复免疫在塑造免疫反应前景中的重要作用,并强调了在评估疫苗效力和制定未来免疫策略时,除了考虑预期用途外,还必须考虑体液和细胞免疫成分。
目的是严重的急性呼吸综合征冠状病毒-2(SARS-COV-2)病毒的传播是空前的,在3个月内扩散到180多个Coun的尝试,严重程度可变。归因于这种变异的主要原因之一是遗传突变。因此,我们旨在预测全球可提供的SARS-COV-2基因组的峰值蛋白突变,并分析其对抗原性的影响。材料和方法几个研究小组生成了全基因组测序数据,这些数据可在公共存储库中获得。从1,325个完整的基因组中提取了1,604种尖峰蛋白和NCBI中的SARS-COV-2的279个部分尖峰编码序列,直到2020年5月1日,在2020年5月1日提供,并经过多个序列一致性,以发现与报告的单核Otiide多晶型(SNEPS)相对应的突变。此外,推断出的预测突变的抗原性,并且表位叠加在尖峰蛋白的结构上。结果序列分析导致高SNP频率。显示出高抗原性的预测表位中的显着变化是受体结合结构域(RBD)中的A348V,V367F和A419S。在表现低抗原性的RBD中观察到的其他突变为T323i,A344S,R408I,G476S,V483A,H519Q,A520S,A522S和K529E。RBD T323I,A344S,V367F,A419S,A522S和K529E是这项研究中首次报道的新型突变。此外,在Heptad重复域中观察到A930V和D936Y突变,并在Heptad重复域2中指出了一个突变D1168H。结论S蛋白是疫苗发育的主要靶标,但是在全球所有可用的基因组中,S蛋白的抗原表位中预测了几种突变。在短时间内各种突变的出现可能会导致蛋白质结构的构象变化,这表明开发通用疫苗可能是一项具有挑战性的任务。
MADe 中的分析方法支持整个设计、操作和维持生命周期的 RAM 活动。基于 MADe 平台模型的通用配置和结构开发的可靠性框图 (RBD) 捕获了项目操作和故障依赖关系。基于可用系统信息和成熟度的项目级可靠性通过直接输入数据、可靠性分配和可靠性预测模型输入。