散装NB-TA-TI-ZR难治性浓缩合金(RCCA)是通过元素粉末的等准组混合物的定向能量沉积(DED)的加成制造方法制备的。在化学成分的成本和变异性方面,使用元素粉代替预合金粉是有益的。但是,要优化沉积参数更需要。使用扫描速度的变化来研究不同热输入的影响。发现降低的扫描速度有效地减少了微观结构中存在的未溶解的NB/TA颗粒的数量。在沉积过程中采用了预热至500℃的平台,从而在所研究的沉积样品中获得了最佳的微观结构均匀性。最后,进行了1400°C/24 h的均质化退火。尽管对完全TA颗粒溶解的热 - 钙预测,但它们仍然存在于材料中。必须通过优化沉积参数来实现从元素粉末产生的RCCA的合理微结构均匀性,而对于粉末颗粒大小的尺度上的异质性,同质化退火是不可行的。
其他功能 – 前方碰撞警告 (FCW) | 前方防撞辅助-汽车 (FCA-Car) | 前方防撞辅助-行人 (FCA-Ped) | 前方防撞辅助-循环 (FCA-Cyl) | 盲点防撞辅助 (BCA) | 车道保持辅助 (LKA) | 车道偏离警告 (LDW) | 驾驶员注意警告 (DAW) | 盲点视图监视器 (BVM) | 安全出口警告 (SEW) | 带停止和启动功能的智能巡航控制 (SCC w/ S&G) | 远光灯辅助 (HBA) | 前车偏离警报 (LVDA) | 后方交叉路口防撞辅助 (RCCA) | 后方乘员警报 (ROA) 带停止和启动功能的智能巡航控制 (SCC w/ S&G)
• 8 airbags • Electronic stability control (ESC) • 4-wheel anti-lock braking system (ABS) • Hill-assist control (HAC) • Forward collision avoidance assist with junction turning function, lane-change oncoming, lane-change side, and junction crossing 1 • High beam assist (HBA) • Lane keeping assist system (LKA) 1 • Highway drive assist II 1 • Lane following assist (LFA) 1 •盲点碰撞避免辅助(BCA)1•盲点碰撞警告(BCW)1•智能速度限制辅助(ISLA)1•后交叉交通冲突避免避免辅助辅助(RCCA)1•后交叉交通冲突警告(RCCW)1 (TPMS)•轮胎机动性套件•带动态指南的后视摄像头1•中央门锁•电源子门锁
2SE 开始对 ABS 进行正式的资格测试。经 SHOT 批准的资格测试计划记录了 ABS 将在极端高温下进行测试,完成后将移至振动室进行严格的振动测试。尽管顺序测试是标准做法,但 2SE 新晋博士材料科学家 Fernando 认为标准测试协议可能无法完全代表飞机在实际飞行中可能面临的温度和振动综合环境。Fernando 决定对 ABS 进行临时且未拨款的热振动综合分析。Fernando 的分析发现了综合环境中的潜在风险。他推测 GAMCO 的先进材料用于 ABS 存在危险。Fernando 迅速将这一风险告知了总工程师 Vincent。Vincent 对 Fernando 的发现感到惊讶,因为 2SE 环境测试团队最近成功完成了热测试,然后又成功完成了振动测试。尽管费尔南多的分析超出了合同范围,但文森特还是启动了根本原因和纠正措施 (RCCA) 调查,以确定团队为何发现环境资质测试与费尔南多的综合分析结果存在差异。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
属性数据:具有两个可能值(通过或失败)的数据。合规证书:供应商提供的一份法律文件,其中包含合规证书的要求,并特别引用和证明图纸上引用的所有军事、工业、材料和特殊工艺规范均已得到满足。合规证书:供应商提供的一份法律文件,说明其符合所有适用的图纸、规范和采购订单要求。C 图纸:柯林斯航空航天现成组件的图纸。但是,在某些情况下,会添加或定制超出当前现成配置的功能。可交付软件:所有软件,包括嵌入在可交付硬件和可交付固件中的软件。偏差:在制造某项物品之前授予的特定书面授权,允许在特定数量的单位或指定的时间段内偏离物品当前批准的配置文档的特定要求。直接材料:进入最终产品并构成其永久组成部分的材料。此定义包括可能影响这些材料的形式、配合或功能的服务。首件生产件:生产运行中的第一批产品,是计划流程的结果,该流程旨在用于未来相同产品的生产。原型部件或使用不同于正常生产流程的方法制造的部件不应视为首件生产部件。冻结流程:柯林斯航空或柯林斯航空客户已确定的制造流程,未经事先批准不得更改。这些包括流程操作参数、操作顺序、材料或来源。不合格产品:任何不符合相关工程图纸或规范或未按照正确规范或程序加工的材料或产品。无法交付的软件:在设计、制造、检验、测试验收或校准中使用的对可交付产品有直接影响的软件。示例包括但不限于: • 计算机数控 (CNC) • 量具校准 • 坐标测量机 (CMM) • 可编程逻辑控制 (PLC) • 性能验收测试 • 老化产品验收记录:供应商应保留的正式记录,表明产品在产品实现过程中通过了计划的操作并满足计划的要求(例如签名的路由器、完整的 ATP 数据表)质量管理体系 (QMS):用于定义和有效实施组织质量目标的文件、程序和标准实践的集合。原材料:成品的未完成成分,需要进一步加工才能成为成品的材料。根本原因纠正措施 (RCCA):从最根本的层面消除或减少现有不合格、缺陷或其他不良情况的原因而采取的措施。特殊工艺:可能改变物品化学或物理性质的工艺。通常,如果不进行破坏性测试,就无法评估此类工艺的影响。标准部件:完全符合美国政府或行业公认的规范制造的部件,包括设计、制造、