心血管疾病(CVD)的高流行率要求可访问且具有成本效益的连续心脏监测工具。尽管心电图(ECG)是黄金标准,但连续监测仍然是一个挑战,导致探索光摄影学(PPG),这是一种有希望的但更基本的替代方案,可在消费者可穿戴设备中获得。这个概念最近引发了将PPG转化为ECG信号的兴趣。在这项工作中,我们介绍了区域限制扩散模型(RDDM),这是一种新型扩散模型,旨在捕获ECG的复杂时间动力学。传统的扩散模型,例如deno deno扩散概率模型(DDPM)在捕获整个信号中不可分犯的噪声过程中捕获这种细微差别时面临挑战。我们提出的RDDM通过企业进行了一个新颖的远期过程来克服这种限制,该过程有选择地将噪声添加到ECG信号中的QRS复合物等特定区域(ROI),以及一个反向过程,该过程散布了ROI和非ROI区域的差异。定量实验表明,RDDM可以在少于10个扩散步骤中从PPG产生高保真性ECG,从而使其非常有效且在计算上有效。此外,为了严格验证所产生的ECG信号的有用性,我们引入了心脏桥,这是针对各种心脏相关任务的全面评估基准,包括心率和血压估计,压力分类以及对心房颤动和糖尿病的检测。我们的详尽实验表明,RDDM在心脏座位上实现了最先进的表现。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。
・发现在茎尖分生组织中基因组DNA高度甲基化,并且成花素可增加DNA甲基化。 ・明确了茎尖分生组织中的DNA甲基化主要由RNA依赖性DNA甲基化途径(RdDM途径)介导。 ・提出了成花素的新功能,即通过DNA甲基化抑制茎尖分生组织中的转座子转移。 ・成功快速大量地分离了以前难以分析的细茎尖分生组织。
在阐明植物非编码 RNA 的重要作用方面取得了显著进展。在这些 RNA 中,长链非编码 RNA (lncRNA) 引起了广泛关注,尤其是它们在植物环境胁迫反应中的作用。LncRNA 在不同水平上调控基因表达,其中一种机制是通过募集 DNA 甲基转移酶或去甲基化酶来调节靶基因转录。在这篇小型综述中,我们重点介绍了 lncRNA 的功能,包括它们在 RNA 指导的 DNA 甲基化 (RdDM) 沉默途径中的潜在作用及其在非生物胁迫条件下的潜在功能。此外,我们还介绍并讨论了作物中 lncRNA 的研究。最后,我们提出了对植物育种可能重要的未来研究的路径展望。
自 20 世纪 90 年代中期以来,转基因生物(主要是植物)已在某些国家(尤其是美洲)进行商业化种植。目前的转基因生物是使用“第一代”基因工程技术开发的。最近,随着新基因工程技术的出现,转基因生物的新应用和创造新特性的新模式也得到了发展。嫁接、同源和同源、反向育种和 RNA 指导的 DNA 甲基化 (RdDM) 要么利用使用第一代技术创建的转基因生物作为中间阶段,要么在农业渗透的情况下无意中产生转基因生物。大多数(如果不是全部)关于第一代转基因生物的主要担忧都适用于这些新型转基因生物和新的基因工程技术。一些新型转基因生物(例如基于 RNA 干扰 (RNAi) 的转基因植物)对风险评估提出了额外的挑战,新的基因工程技术(如基因组编辑)也是如此。
摘要:病毒诱导的基因沉默(VIGS)是一种 RNA 介导的反向遗传学技术,现已发展成为分析基因功能不可或缺的方法。它利用植物的转录后基因沉默(PTGS)机制下调内源基因,以防止系统性病毒感染。根据最近的进展,VIGS 现在可以用作高通量工具,通过暂时抑制目标基因表达,通过病毒基因组在植物中诱导可遗传的表观遗传修饰。由于 VIGS 诱导的 DNA 甲基化进展,植物中正在开发具有所需性状的新型稳定基因型。在植物中,RNA 指导的 DNA 甲基化(RdDM)是一种机制,其中表观遗传修饰物由小 RNA 引导至目标位点,小 RNA 在靶基因的沉默中起主要作用。在这篇综述中,我们描述了 DNA 和 RNA 病毒载体的分子机制,以及通过改变研究植物中通常无法通过转基因技术获得的基因所获得的知识。我们展示了如何使用 VIGS 诱导的基因沉默来表征跨代基因功能和改变的表观遗传标记,从而改善未来的植物育种计划。
胞嘧啶DNA甲基化参与了转座元件(TE)沉默,烙印和X染色体灭活。植物DNA甲基化由Met1(Mammalian DNMT1),DRM2(哺乳动物DNMT3)和两个植物特异性DNA甲基转移酶,CMT2和CMT3介导(Law and Jacobsen,2010年)。DRM2通过植物特异性RNA指导的DNA甲基化(RDDM)途径建立了植物中的从头DNA甲基化,依赖于两个DNA依赖性RNA聚合酶,POL IV和POL V(Gallego-Bartolome et al。木薯的DNA甲基团先前已根据其单倍体倒塌的基因组进行了记录(Wang等,2015)。由于木薯基因组是高度杂合的,因此单倍型折叠基因组的DNA甲基团错过了甲基体的许多特征。With the development of long-read sequencing and chromosomal conformation capture techniques, haplotype-resolved genomes are available for highly heterozygous genomes (Mansfeld et al., 2021 ; Qi et al., 2022 ; Sun et al., 2022 ; Zhou et al., 2020 ), which provides high-quality reference genomes facilitating studies of haplotype-resolved DNA甲基组。为了剖析木薯的单倍型分辨DNA甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基(TME7和TME204)在两个单倍型基因组分辨率(TME7和TME204)中进行了研究。 Al。,2021;测序读数分别映射到不同的单倍型,允许零不匹配和一个最佳命中,这允许分离属于不同单倍型的读数。总体而言,我们发现尽管使用了WGB和EM-SEQ方法,但两种单倍型具有相似的整体