先进封装平台种类繁多,包括扇出型晶圆级封装/2.5-D、3D 堆叠封装和片上系统 (SoC)。多种 AI 和 HPC 技术利用高密度扇出型 HD-FO(或超高密度扇出型)/2.5-D 和 3D 技术,而用于服务器、网络、游戏和边缘设备的其他计算应用可能使用倒装芯片 BGA (FCBGA) 设计。下一代 HD-FO/2.5-D 封装通常具有相当大的占用空间,可集成非常大的芯片。世界顶尖半导体公司开发了许多此类设计的示例,例如 CoWoS ® 和 I-Cube ®。虽然方法和架构各不相同,但这些技术通常集成大型中介层芯片/重分布层 (RDL),其他芯片(逻辑、计算和堆叠高带宽存储器)集成在其上。结果就是封装体相当大,使得处理和保护变得更具挑战性。
为了支持员工获得va cccated wht the Ir Turn,Ma na ge rs Muy 11U1H O1I/C 11P到4小时的管理,请在TM E NT的AP PO中进行ti ti ti ti ti ti ti ti ti ti ti a ch vacc int tm e nt中,其中包括向d f fr om e e e e e e e e e e e e sit a in sit a in sit aTi e ant sit aTi e ant sit aTi e anti sit aTi e anti sit aTi e anti sit aTi aT的旅行时间。一个男人年龄率 ·1he u se th in Ive休假/辩护的缺席-19 vid -19 vicc in Io n in io n是一个uth oth o ri zu l ri zu l rega rega rdl c〜'l l ol是在e e e e e e e e e e e e e e e e e e e e e e e e rk还是在ewo rk s tatu上进行。·1he u se th in Ive休假/辩护的缺席-19 vid -19 vicc in Io n in io n是一个uth oth o ri zu l ri zu l rega rega rdl c〜'l l ol是在e e e e e e e e e e e e e e e e e e e e e e e e rk还是在ewo rk s tatu上进行。
• 为提高性能,晶圆工艺技术的快速发展推动了 HKMG 和 FinFET 等可靠性极限。 • 晶圆上新材料的加速引入:铜、超低 k ILD、气隙、氮化氧化物、高 K 栅极电介质和新互连 • 先进的封装和凸块技术:fcBGA、fcCSP、WLCSP、无铅凸块、铜柱、铜线、微凸块、多层 RDL、TSV/Interposer、3D/2.5D、FanOut WLP 封装和 SiP • 新封装材料:增材制造基板、超低损耗电介质、底部填充材料、塑封材料、基板表面处理、无铅和铜凸块等 • 多级应力相互作用使可靠性失效机制变得复杂 • 日益严格的客户要求和应用 • 快速上市需要可靠性设计以减少认证/批量生产时间
区域图 22.1 区域图 22.1 参见 AD 2 LFBH ARC 01。无线电通信故障 22.2 无线电通信故障板 22.2 在 VMC 起飞时:半转弯降落在 AD 上或继续飞行到适当的 AD。在 VMC 中起飞时:掉头降落在机场或继续飞往合适的机场。在 IMC 出发时:继续飞行直到最后指定 FL 的 TMA 限制,然后开始爬升至飞行计划中指示的巡航 FL。在仪表气象条件 (IMC) 下出发:继续飞行至最后指定的飞行高度层的终端飞行区域 (TMA) 限制,然后开始爬升至飞行计划中指示的巡航飞行高度层。到达时若错过 APCH:执行新的 APCH。如果不成功,则爬升至 2500 英尺并按照 RDL 345° BMC(MAG 165°)清除 TMA,以寻求 VMC 条件。
除了使用有机基板封装外,为了克服尺寸限制,人们还提出了新的封装技术并将其应用于半导体产品。晶圆级封装 (WLP) 和扇出型晶圆级封装 (FOWLP) 的开发是为了通过采用晶圆工艺而不是基于层压的工艺来进一步缩小封装尺寸。对于亚微米互连,还提出了通过 Si 中介层 (TSI) 进行互连,并用于高密度 2.5D/3D 封装,其中 Cu BEOL 互连可用作再分布层 (RDL)。热压键合 (TCB) 目前用于 2.5D/3D 组装,然而,混合键合将是进一步缩小芯片连接尺寸的关键推动因素,这将在后面讨论。英飞凌于 2006 年提出了一种称为嵌入式晶圆级球栅阵列 (eWLB) 的 FOWLP [1],该技术于 2009 年转让给 STATS ChipPAC 进行批量生产。台积电开发了另一种类型的 FOWLP,称为
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
9) K. Mitsukura、M. Toba、K. Urashima、Y. Ejiri、K. Iwashita、T. Minegishi、K. Kurafuchi,“用于有机中介层的超精细和高可靠性沟槽布线工艺提案。”国际微电子组装与封装协会 (IMAPS) 2016。10) K. Mitsukura、S. Abe、M. Toba、T. Minegishi、K. Kurafuchi,“使用新设计的绝缘阻挡膜实现 1/1 μm 线/间距的高可靠性 Cu 布线层。”国际微电子组装与封装协会 (IMAPS) 2017。11) M. Minami、D. Yamanaka、M. Toba、S.H.Tsai, S. Katoh, K. Mitsukura,“制造具有精细 Cu 布线和出色电气可靠性的两种面板级中介层” 2023 年电子元件和技术会议 (ECTC)。12) S.H.Jin, W.C. Do, J.S.Jeong, H.G.Cha, Y.K.Jeong, J.Y.Khim,“具有细间距嵌入式走线 RDL 的 S-SWIFT” 2022 年电子元件和技术会议 (ECTC)。13) AH 系列 | 产品 | Resonac
基准保费:根据获批准的辛迪加业务计划,管理代理人预计实现其要求的结果时为每个风险支付的价格。 灾难建模:(也称为巨灾建模)是使用计算机辅助计算来估计飓风或地震等灾难性事件可能造成的损失的过程。 委托授权:将承保和索赔权委托给另一个实体的所有形式的业务(例如,有约束力的授权机构、财团、保险单等)。 ERM:企业风险管理 ILW:行业损失担保 KPI:关键绩效指标 LCM:劳合社灾难模型 LCR:劳合社资本回报 LITA:劳合社内部交易建议 劳合社回报:包括但不限于:经纪人报酬回报;LCM 提交;PMDR;QMB;RDL;RDS;相关方回报;SBF;遵守劳合社承保和索赔标准的自我评估;辛迪加业务计划;辛迪加再保险计划回报;索赔交换 ORSA:自身风险和偿付能力评估 PBQA:预绑定质量保证
ph: +82-041-925-1389电子邮件:yuseon.heo@samsung.com摘要移动设备有限的热预算几乎不允许全速使用高性能应用程序(AP)。但是,由于人工智能技术已迅速应用于移动设备,因此高速和大容量信号处理等需求正在不断增加。因此,控制AP芯片的热量生成成为关键因素,并且有必要开发基于重分配层(RDL)的风扇外套件(FOPKG)结构,该结构不会增加包装的厚度,同时最大程度地提高耗散量的厚度。CU柱的高度在产生可能施加厚的Fopkg的高度正在越来越高,并且在这项研究中,开发了世界上最厚的光孔材料(> 350UM厚度),以生产Cu Post(> 300UM厚度)。研究了光震鼠的光透射率的影响以及根据主聚合物的分子结构的溶解度的影响,以进行厚光构师的光刻过程。基于对这种厚的光质危行为的理解,开发了最佳的液体类型的光蛋白天抗事组成。通过光刻评估基于厚的光片特性,通过实施和CU电镀板进行深孔,以在AP产品设计施加的晶片中获得CPK 1.27的产率。关键字风扇外包装,厚度厚度光抗光毒师,Cu Post取决于对厚光构师的深入理解和实验,可以建立高级研究基础,以增加光孔厚度和更精细的CU后俯仰,以确保散热特征并提高建筑的自由度。