B.A. (hons./research) - 历史记录,英语,一般能力测试Sr. 次级(10+2),最低标记为50%。 101 B.A. B.A. - 历史记录,英语,一般能力测试高级 次级(10+2),最低标记为50%。B.A.(hons./research) - 历史记录,英语,一般能力测试Sr.次级(10+2),最低标记为50%。101 B.A. B.A. - 历史记录,英语,一般能力测试高级 次级(10+2),最低标记为50%。101 B.A.B.A. - 历史记录,英语,一般能力测试高级 次级(10+2),最低标记为50%。B.A.- 历史记录,英语,一般能力测试高级次级(10+2),最低标记为50%。
通过结合先进的规划软件、基于证据的模型投资组合以及用于交易和托管的创新平台技术,我们简化了您的流程、节省了时间、降低了成本并为您的客户创造卓越的成果。
Viji V.助理教授Sree Narayana培训学院,Nedunganda,Tiruvananthapuram,喀拉拉邦,印度,印度摘要:21世纪,21世纪意识到了一个快速的技术发展和信息超负荷的时代。 教育世界正在不断变化。 传统的教育系统曾经僵化,现在需要重新考虑,重新设计和适应。 在当代的教育格局中,适用于简短学习材料的简洁和有针对性学习材料的需求正在上升。 但是,此类材料的手动创建是劳动密集型且耗时的。 此外,根据各个学习者的需求和偏好量身定制内容会增加另一层的复杂性。 传统教育模型中最有希望的改编之一是纳米学习的概念,这种方法与孩子们对数字技术的倾向日益倾向和有意义的信息消费相吻合。 但是,创建吸引纳米学习材料来满足学习者的多样化需求是一项艰巨的任务。 应对这一挑战,就必须整合诸如人工智能(AI)之类的创新方法,以满足现代教育的不断发展需求。 通过利用AI的力量,教育工作者可以产生个性化的学习经验,自适应内容产生以及对学生的同时支持。 本研究的重点是利用生成AI的潜在优势来自动创建纳米学习材料,同时确保自定义和质量。 I. 它改变了他们和他们对世界的看法。Viji V.助理教授Sree Narayana培训学院,Nedunganda,Tiruvananthapuram,喀拉拉邦,印度,印度摘要:21世纪,21世纪意识到了一个快速的技术发展和信息超负荷的时代。教育世界正在不断变化。传统的教育系统曾经僵化,现在需要重新考虑,重新设计和适应。在当代的教育格局中,适用于简短学习材料的简洁和有针对性学习材料的需求正在上升。但是,此类材料的手动创建是劳动密集型且耗时的。此外,根据各个学习者的需求和偏好量身定制内容会增加另一层的复杂性。传统教育模型中最有希望的改编之一是纳米学习的概念,这种方法与孩子们对数字技术的倾向日益倾向和有意义的信息消费相吻合。但是,创建吸引纳米学习材料来满足学习者的多样化需求是一项艰巨的任务。应对这一挑战,就必须整合诸如人工智能(AI)之类的创新方法,以满足现代教育的不断发展需求。通过利用AI的力量,教育工作者可以产生个性化的学习经验,自适应内容产生以及对学生的同时支持。本研究的重点是利用生成AI的潜在优势来自动创建纳米学习材料,同时确保自定义和质量。I.它改变了他们和他们对世界的看法。关键词:21 St Century Education,Nano学习,生成人工智能(AI),技术进步,教学材料。引入学习过程的个性化和个性化不再是一种趋势和时尚,而是严格的必要性。一所千篇一律的学校非常适合教育工厂工人。但是,这种情况已经改变,人们习惯了个性化。此外,教育必须与这一现实相匹配。在线教育涉及这样的自适应系统,可帮助教师制定量身定制的学习计划。nano教育是一种自适应系统,现在正在学习领域获得接受。纳米教育的主要特征之一是它与信息技术的密切联系。例如,有一些用于小组学习的系统,可以为每个学生生成独特的作业,检查他们并为整个课程编译统计信息。连续,教师根据这些信息为每个学生建议一个个性化的发展途径。他将有时间考虑一下,因为人工智能将使他常规检查工作并跟踪每个学生的进步。这种方法需要结构性变化。最初,由于我们必须注意每个学生,因此这种教学方式不适合大型课程。这需要较小的小组说明。此外,对教师的专业水平的要求更大。他们不足以浏览信息并提供肤浅的演讲或演讲。教师应该能够利用当代教学方法,这些方法目前比对主题本身的知识更重要。
摘要:随着信息技术的快速发展,恶意软件已成为高级网络安全威胁,针对计算机系统,智能设备和大规模网络实时。传统检测方法通常由于准确性,适应性和响应时间的限制而无法识别出新的恶意软件变体。本文对实时恶意软件检测的机器学习算法进行了全面综述,并根据其方法和有效性对现有方法进行了分类。该研究研究了最新进步,并评估了各种机器学习技术在以最小的假阳性和提高可伸缩性检测恶意软件时的性能。此外,还讨论了关键挑战,例如对抗性攻击,计算开销和实时处理约束,以及潜在的解决方案以增强检测能力。进行了经验评估,以评估不同机器学习模型的有效性,为实时恶意软件检测的未来研究提供了见解。
癌症仍然是世界上最大的死亡原因,并且是一种严重,无法治愈和侵略性疾病。现有的癌症疗法包括化学疗法,免疫疗法,放疗,基因疗法和手术程序。化学疗法是癌症的主要治疗方法。化学治疗药物的静脉内给药会对人体造成有害影响,这是因为它们的半衰期和缺乏靶向能力。为了应对这些挑战,基于细胞的药物输送系统已成为一种有前途的方法,利用工程细胞以目标方式运输和释放治疗剂。借助纳米技术,纳米中氨酸在改善癌症治疗方面具有良好的应用前景。与单个药物输送相比,纳米递送系统可以通过被动或主动靶向延长药物半衰期的延长副作用并改善肿瘤中的药物积累,这在癌症治疗方面具有更大的优势。基于纳米颗粒的药物递送方法在癌症治疗中表现出许多好处,包括改善的药代动力学,准确的肿瘤细胞靶向,较小的副作用和耐药性降低。与正常组织相比,肿瘤组织具有丰富的血管,不规则的血管壁细胞,纳米颗粒很容易从肿瘤血管中渗出。通常将纳米颗粒,细菌和病毒用作递送车辆来促进药物稳定性并将药物运送到所需的部位。本综述概述了纳米材料在基于细胞的药物递送系统中的作用。如今,基于纳米颗粒的治疗已经报道了如何在包括乳腺癌卵巢癌和前列腺癌在内的几种类型的癌症中克服多种耐药性的潜力。 纳米技术在医学上开放了一个新的癌症治疗阶段,这两个领域的结合值得更多的深入研究。 它讨论了各种类型的纳米材料,其作用机理,优势和局限性。 此外,它强调了该领域的最新进步以及未来的观点。如今,基于纳米颗粒的治疗已经报道了如何在包括乳腺癌卵巢癌和前列腺癌在内的几种类型的癌症中克服多种耐药性的潜力。纳米技术在医学上开放了一个新的癌症治疗阶段,这两个领域的结合值得更多的深入研究。它讨论了各种类型的纳米材料,其作用机理,优势和局限性。此外,它强调了该领域的最新进步以及未来的观点。
2023年,大会授权某些公立医院与其他医院或医院分支机构签订合作协议,以从事活动以增加获得医疗保健的机会。该法案授权少于50张床位的私立非营利性医院,还可以签订协作协议。