4. 评估 ................................................................................ 12 公寓改造与设计 ................................................................ 13 交通与停车 .............................................................................. 14 废弃物…..………………………………………………………………15 景观 .............................................................................. 15 公共领域 .............................................................................. 16 可持续性与气候 ................................................................ 16 免责声明 .............................................................................. 18
• 已建成的社区,尤其是重点发展区域,拥有卡尔加里最高的步行、自行车和公共交通出行方式份额,但他们往往觉得缺乏支持这一现实的公共领域。 • 交通基础设施应侧重于解决步行和无障碍基础设施的问题,包括改善连通性、缺失环节和人行道扩建。 • 社区应拥有一个易于导航且安全的步行和自行车网络。 • 车辆交通和速度是已建成地区的安全隐患。应通过公共领域的改善来减少交通量和速度,例如缩小交叉路口、通过增加人行道宽度来减少街道宽度、改善照明和增加额外的交通控制。 • 额外的密度会对交通造成影响,应根据需要予以解决。
Dr. Pratibha Tiwari DOI: https://doi.org/10.33545/26174693.2024.v8.i1Sg.382 Abstract This article provides an in-depth exploration of CRISPR-Cas9, a ground breaking genome editing technology that has revolutionized the field of genetic research. It begins with a historical overview of CRISPR, tracing its origins from a natural defense mechanism in bacteria to its development into a powerful tool for precise genetic manipulation. The mechanism of action of CRISPR-Cas9 is then elucidated, highlighting its role as a molecular scissor guided by RNA to target specific DNA sequences for editing. The transformative impact of this technology on genetic research is discussed, emphasizing its contributions to various scientific domains, including medicine, agriculture, and bioengineering. Furthermore, the article addresses the ethical considerations and debates surrounding genome editing, particularly the implications of germline modifications and the potential for misuse. Potential applications and future directions of CRISPR-Cas9 are explored, revealing its vast possibilities in treating genetic disorders, enhancing crop resilience, and more. This comprehensive review underscores the significance of CRISPR-Cas9 in advancing genetic research while acknowledging the need for responsible and ethical application in this rapidly evolving field. Keywords: CRISPR-Cas9, DNA, RNA, genetic research, genes etc. Introduction In the annals of scientific discovery, few innovations have sparked a revolution quite like the advent of CRISPR-Cas9 genome editing technology. This ground breaking tool has not only reshaped our understanding of the genetic blueprint of life but has also opened up a realm of possibilities that were once relegated to the realm of science fiction. Genome editing, a concept that involves the precise alteration of DNA within a living organism, has transitioned from a complex and costly endeavor to a more accessible and accurate technique, thanks to CRISPR-Cas9 [1, 5] . The story of CRISPR-Cas9 is one of serendipity and ingenuity, rooted in a quest that began decades ago. It's a narrative that winds its way from the discovery of restriction enzymes in the 1970s to the intricate mechanisms of bacterial immune and is crucial, as it lays the foundation for understanding how CRISPR-Cas9 evolved from a natural phenomenon into a formidable tool in genetic engineering [6, 12] . Today, CRISPR-Cas9 stands at the forefront of modern biology, heralding a new era of genetic exploration and manipulation. Its significance cannot be overstated; it is not merely a tool for editing genes but a gateway to potential cures for genetic diseases, advancements in agricultural resilience, and solutions to ongoing environmental challenges and it sets the stage for an in-depth exploration of CRISPR-Cas9, delving into its development, mechanism, and the profound impact it has on our approach to biology and medicine [13] . CRISPR-Cas9: Mechanism and Development The CRISPR-Cas9 system, a revolutionary tool in the field of genetic engineering, represents a significant leap forward in our ability to modify DNA with precision and efficiency. This section of the article delves into both the intricate mechanism of CRISPR-Cas9 and its developmental journey from a bacterial defense strategy to a cutting-edge tool in genome editing [14] . Mechanism of CRISPR-Cas9 The CRISPR-Cas9 system originates from a natural process used by bacteria to protect themselves against invading viruses.
B.改善 Fulbourne Road 前方的现有公共区域,打造以行人为中心的绿色、安全、人人可通行的环境。人行道宽度宽阔,可改善景观并种植新树。
继续与政府、商界、慈善机构和民间领袖合作,带头振兴匹兹堡市中心,确保市中心的活力和安全,以及重新定位市中心房地产、公共领域和公共空间的战略性重建和投资战略。
同步的微技术革命……“宏观”革命是多种技术的结合,它创造了一种全新的、前所未见的全球经济/社会/军事活动结构……或许可以称之为一个新的活动领域……
我们的生活质量和个人对公共领域的享受在一定程度上取决于界定和支撑街道、公园和开放空间边缘的建筑物。建筑物的规模和体量界定了公共领域的边缘并赋予其形状。这些建筑物边缘的底层用途、入口、门、窗、材质和质量有助于确定这些公共空间的视觉质量、活动、舒适环境和安全感。从街道、公园或开放空间可见并构成其边缘的单个建筑物立面被一起解读为界定和支撑公共领域的墙壁。它们不仅应从单个建筑工地和项目的角度来构思,还应从场地、建筑物及其与公共领域的界面如何适应现有和/或规划中的社区和城市环境的角度来构思。每个新开发项目都应设计为城市整体城市设计质量做出贡献。
多模式电子健康记录(EHR)数据的整合已显着提高了临床预测能力。利用临床注释和多元时间序列EHR,现有模型通常缺乏与临床任务相关的医学环境,从而促使外部知识纳入了外部知识,尤其是从知识图(KG)中。以前的KG知识的方法主要集中于结构化知识提取,忽略非结构化数据模式和语义高维数学知识。在响应中,我们提出了领域,这是一种检索增强生成(RAG)驱动的框架,以增强解决这些局限性的多模式EHR代表。首先,我们应用大型语言模型(LLM)来编码长上下文临床注释和GRU模型以启用代码时间序列EHR数据。其次,我们提示LLM在具有相应的医学知识的专业标记的外部知识图(PrimeKG)中提取与任务相关的医疗实体和匹配实体。通过匹配并与临床标准保持一致,我们的框架消除了幻觉并确保一致性。最后,我们提出了一个自适应多模式融合网络,将提取的知识与多模式EHR数据集成在一起。我们关于模仿-III死亡率和再入院任务的广泛实验展示了我们领域框架的优越性能,而不是基准,强调了每个模块的有效性。领域框架有助于完善多模式EHR数据在卫生保健中的使用,并弥合差距,并具有细微的医学环境,对于知情的临床预测至关重要。