电视:30,000个/月MOSFET/IGBT:10,500 PC/月EPI:60,000 PCS/月Schottky:45,000 PCS/月电视eSD阵列:5,000 PCS/月份底盘:5,000 PCS/月/月/月弗雷德:5,000 PCS/月/月LVF Rectifier:5,000 PCS PCS PCS PCS PCS PCS PCS PCS PCS/DIV
摘要。一种可持续的能源经济意味着高度易易申节能源的高股份,需要使用储能技术。氢是一种非常灵活的能量载体,可以用作电网中的大规模储能。本文着重于智能网格环境中氢的产生,转换和存储选项的整合。一个过程电流源(PC),该过程充当碱性电解系统的整流器,并与不专门设计用于动态操作的常规整流器结构进行了比较。使用交错算法将智能网格的所有组件缩放,该算法结合了模式搜索算法和遗传算法。此智能优化工具显示出很高的灵活性,准确性和低计算时间。与没有模式搜索方法的遗传算法相比,所需的计算时间已占56%。此外,能源系统优化将碱性电解降低到初始规模的30%以下,以产生较低的成本。因此,整流器性能的差异降低为较小的贡献。关键字。氢产生,整流器,智能网格,能量转换,优化al-gorithm
摘要 近年来,射频能量收集已成为一个有趣的研究领域。本文介绍了多频带整流电路的实施布局。我们在这里实现了 1.9 GHz 的整流电路。整流电路的设计和仿真采用 -10 dBm、0 dBm、10 dBm 的输入功率。在谐振频率 1.83GHz、4.37 GHz 和 5.53 GHz 频率下,输入功率相对于直流电压的变化如图所示。当负载为 10kOhm、1Kohm、5Kohm,谐振频率为 1.83GHz、4.37GHz 和 5.53GHz 时,效率 (%) 相对于输入功率 (dBm) 的变化如图所示。当输入功率为 -10dBm 和 10dBm,频率为 1.83GHz、4.37GHz 和 5.53GHz 时,直流输出电压相对于负载的变化如图所示。本文展示了输入功率为-10dBm、0dBm、谐振频率为1.83GHz、4.37GHz和5.53GHz时效率随负载的变化。本文解释了输入功率为-10dBm和0dBm、负载为1kOhm、5Kohm和10Kohm时输出直流电压随频率的变化。本文还介绍了输入功率=-10 dBm和0dBm、负载=10Kohm时输入阻抗(Zin)实部和虚部随频率(GHz)的变化。本文还展示了输入功率为-10dBm、负载为10KOhm时回波损耗S(1,1)(dB)随频率的变化。关键词:整流器、回波损耗、射频能量收集
实验 注意:至少要进行五个实验 1. 绘制 Si PN 结二极管的正向/反向特性。 2. 绘制齐纳二极管的正向/反向特性 3. 研究并绘制齐纳二极管作为稳压器的特性 4. 研究半波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 5. 研究全波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 6. 研究桥式整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 7. 画出 CE 配置中 npn 晶体管的输入输出特性曲线 8. 画出 CB 配置中 npn 晶体管的输入输出特性曲线 9. 画出 JFET 的漏极和传输曲线 10. 研究 OPAMP (741) 并计算 (i) 反相模式和 (ii) 非反相模式下的增益
摘要本文提出了一种基于对电感器(PSSHI)的可扩展平行同步开关收集的自动多重压电(多PZTS)能量收集界面,该开关收获了功率区域优化技术。可扩展的PSSHI整流器可以接受任意阶段的多PZTS电压输入,从而解决了电荷冲突问题。功率区域优化器可以帮助整流器在高输出功率区域内运行。同时,电路中的所有活动设备均由收获的能量提供动力。最后,实验结果表明,电路的平均充电能力为559.8°W,能量转换效率为80.7%。与没有功率区域优化的可扩展的PSSHI整流器相比,该电路中的平均充电功率增加了94%。此外,实验测试表明,接口电路可以完全实现冷启动和自动供应。关键词:多个压电能量收获,可扩展的平行同步开关收获(PSSHI),功率区域优化分类:能量收集设备,电路和模块