阿曼a夫准确地确定高等教育中的高风险学生对于及时的干预至关重要。本研究提出了一种基于AI的解决方案,用于使用机器学习分类器来预测学生的绩效。使用信息增益评估选择了过去两年中208个学生记录的数据集,并进行了关键的预测因素,例如中期等级,上学期GPA和累积GPA。通过10倍的交叉验证评估了多个分类器,包括支持向量机(SVM),决策树,天真的贝叶斯,人工神经网络(ANN)和K-Nearest邻居(K-NN)。svm的表现最高,精度为85.1%,F2得分为94.0%,有效地识别出低于65%的学生(GPA <2.0)。该模型是在教育工作者的桌面应用程序中实现的,提供了班级和个人级别的预测。这个用户友好的工具使讲师能够监视绩效,预测结果并实施及时的干预措施,以支持陷入困境的学生。该研究强调了机器学习在增强学术绩效监控方面的有效性,并为AI驱动的教育工具提供了可扩展的方法。k eywords人工智能,机器学习,学生绩效预测,高等教育,基于AI的应用程序1。介绍信息和通信技术的快速发展(ICT)通过重塑教育系统,促使采用数字策略的采用以及突出数字能力的关键差距和不平等现象,对包括教育的各个部门(包括教育)产生了重大影响[1]。在高等教育机构(HEI)中,保持高教育标准并确保学生成功已成为关键的优先事项。政府和认证机构,例如阿曼学术认证机构和质量保证(OAAAQA)参与了阿曼的高等教育机构(HEI)的质量[2]。因此,监视学生绩效已成为符合这些标准并提供问责制的重要因素[3]。讲师经常面临大量的责任,这使得连续监控每个学生的学术进步并实施及时的干预措施具有挑战性[4]。依靠定期评估的传统监测方法可能无法提供支持表现不佳的学生所需的早期见解[5]。教师增加的工作量增加了对整合心理的技术解决方案的需求
COP16于10月21日至11月1日在哥伦比亚的卡利举行,吸引了创纪录的参与者 - 蓝色区域中有26,000名认可的代表,在绿色区域中有100万。CBD执行SEC Retary的Astrid Schomaker说:“我们已经看到了在卡利(Cali)展开生物多样性的全面动员,这引起了全球兴趣。”这项旨在推进昆明 - 蒙特利尔全球生物多样性框架工作(KM-GBF)的关键事件,该工作成立于2022年,设定了23个目标和4个目标,然后将其分为三组。首先采取了减少对生物多样性威胁的行动;第二种是通过可持续使用生物视野来满足人们需求的;第三个涉及实施政府政策和金融框架的工具和解决方案。
经过数年的高增长,直到2022年中期,自2022年下半年以来,法国的住房贷款生产已大大放缓。在利率上升的头几个月中,高利贷利率6上限新贷款的利率使银行很难以经济上可行的价格扩大新的住房贷款。放缓的贷款生产也反映了更紧密的承保和需求降低,因为较高的利率降低了家庭的债务负担能力。与上一年相比,2023年的家庭贷款在2023年下降了41%,在H1 2024中进一步缩水。虽然仍然很慢,但住房贷款的起源仍与2023年底达到的最高点相比,贷款利率较低,但自第2季度2024年底以来就开始恢复。
2型糖尿病(T2DM)患者血清血清素水平与抑郁症之间的可能联系引起了人们的极大兴趣。通过检查HAM-D评分,糖化血红蛋白(HBA1C)水平和血清血清素在接受抗糖尿病药物的T2DM患者中,有或不接受抗抑郁药治疗,我们旨在评估药物如何影响抑郁症状,考虑血清素血清素,将血清素视为抑郁症的标志。我们的发现表明,抗糖尿病药物,尤其是二甲双胍,导致抑郁症状的改善,当抗糖尿病和抗抑郁药与抗抑郁药结合时,其作用增强了。但是,这些改善与血清5-羟色胺水平无关,血清素水平甚至在同一组患者中也显示出很高的变异性。因此,我们的研究不支持使用血清素血清素作为T2DM患者抑郁症的预测标志物,因为许多其他因素,包括代谢异常,胰岛素抵抗和炎症,都会影响这两种疾病。rezumat
信用卡欺诈已成为数字时代的一个紧迫问题,对金融机构和消费者都构成了重大风险。本研究通过将人工神经网络 (ANN) 与梯度提升、eXtreme Boost (XGBoost) 模型相结合,引入了一种用于信用卡欺诈检测的优化框架。此外,该研究还探讨了不平衡数据的挑战,并通过过采样方法和成本敏感建模提出了解决方案。结果证明了该框架在实际应用中的有效性,在识别欺诈交易方面取得了卓越的性能,同时最大限度地减少了误报。这项工作强调了利用混合模型和自适应策略保持领先于不断发展的欺诈策略并增强金融部门网络安全弹性的重要性。未来的研究将侧重于部署实时检测系统并结合先进的时间模型来解决动态欺诈模式
预测性维护正在通过使组织能够预测机器故障,最大程度地减少计划外停机时间并优化维护时间表来改变行业。本文探讨了高级机器学习(ML)和人工智能(AI)技术在预测维护系统中的应用。使用传感器数据,这些技术可以实时预测机器组件故障,从而允许降低成本并提高生产率的先发制度。本研究回顾了基于AI的关键预测维护模型,例如随机森林,长期记忆(LSTM)网络,支持向量机(SVM)和神经网络,突出了它们的有效性和局限性。本文进一步研究了物联网,云计算和数字双胞胎在增强预测性维护系统中的整合,并强调了AI驱动的预测系统中解释性,可信度和透明度的重要性。关键字:预测性维护,机器学习,人工智能,行业4.0,数字双胞胎,物联网,解释性,可信赖的AI。
农业是全球维持和经济发展的基石,是无数行业的粮食,就业和原材料的来源。但是,该行业面临着持续的挑战,其中之一就是作物疾病的流行。这些疾病不仅威胁着农作物的产量和质量,而且威胁着农民的生计和整个社区的粮食安全。在受这些问题影响最大的农作物中是木薯,这是热带和亚热带地区数百万的重要主食。木薯对恶劣条件的韧性使其成为关键的食物来源,但它易受木薯细菌疫病(CBB),木薯棕色条纹疾病(CBSD),木薯绿色mottle(CGM)和木薯马赛亚疾病(CASSAVA GREEN MOTTLE(CGM)和CASAVA MOSAIC疾病(CMD)的脆弱性。及时,准确地确定木薯疾病对于有效管理至关重要,因为早期干预可以防止广泛的爆发并减轻经济损失。传统的疾病检测方法通常取决于专家知识和手动检查,这对于小农户来说可能是耗时,昂贵且无法访问的。人工智能(AI)和机器学习(ML)的进步为这一挑战提供了有前途的解决方案,从而使自动化和准确地检测到植物疾病的大规模检测。该项目引入了一个基于深度学习的木薯疾病检测系统,利用强大的Rexnet-150模型进行图像分类。该系统被部署为使用烧瓶构建的用户友好的Web应用程序,即使对于具有最少技术专业知识的个人,也可以确保可访问性。训练有素的模型能够诊断出高精度的木薯叶条件,将其分为五类:木薯细菌疫病(CBB),木薯棕色条纹病(CBSD),木薯绿色mottle(CGM),木薯马赛克疾病(CMD)和健康。用户只需上传木薯叶的图像,该应用程序提供了即时诊断以及可操作的见解。这些见解包括特定疾病的预防措施和管理策略,使农民有能力采取及时的行动来保护其作物。除了其实际实用性之外,该项目与将技术纳入可持续农业的全球努力保持一致。通过利用AI,它可以增强疾病监测和预防,减少对手动检查的依赖,并支持农民采用积极的农业实践。该解决方案的可扩展性意味着它可以适应其他作物和地区,从而进一步扩大了其对全球农业的影响。
摘要印度尼西亚是具有生态系统,物种和遗传学多样性的大型多样性国家之一。Tabat Barito(ficus deltoidea)是一种药用植物,传统上用于天然壮阳药对女性的天然壮阳药,此外,这种植物还具有抗菌,抗糖尿病,抗毒性,抗高血压和抗癌的好处。这项研究研究了药代动力学预测和纤维甲状腺菌中包含的酚类化合物的潜在生物学活性,包括香草酸,奎宁酸和硫酸化合物。使用Swissadme WebTool进行了药代动力学分析,同时使用Way2Drug进行生物活性。药代动力学分析的结果表明,香草酸和硫酸具有良好和高胃肠道吸收,而奎宁酸的吸收率较低。此外,只有硫酸才能穿透大脑的血液。使用PASS对生物学活性的预测表明,香草酸起作用是氯多酮还原酶抑制剂,具有抑制癌细胞增殖的潜力。奎尼酸充当糖磷酸酶抑制剂,这对于对代谢性疾病的细胞反应很重要,而硫酸酸性酸性酸性酸性酸性酸性酸性抗毒素-Cytoothrome-C还原酶抑制剂对抑制肿瘤的生长很重要。这些结果增强了酚类化合物在治疗应用中的可能性,尤其是用于癌症治疗和代谢疾病。
本研究引入了一种创新的机器学习框架,以提高糖尿病预测准确性和模型可解释性。该方法首先通过链式方程 (MICE) 进行多次插补,以解决缺失数据并确保完整的数据集以供分析。为了解决类别不平衡问题,采用了合成少数过采样技术 (SMOTE)。使用 Z 分数异常值检测来去除异常值,进一步提高模型的稳健性。结合灰狼优化器 (GWO) 和方差分析的混合特征选择方法混合 GWAN 优化了相关特征的选择,平衡了预测能力和模型简单性。该框架的核心是自适应增强梯度增强机 (ADGB),这是一种融合了 AdaBoost 和梯度增强机 (GBM) 优势的集成学习模型。通过 Hyperband 算法进行超参数优化可以对模型进行微调,实现 97.84% 的高预测准确率。这种综合方法不仅提高了准确性,还提高了预测模型的精度、召回率和 F1 分数。通过整合这些先进技术,该框架在早期糖尿病诊断中展现出巨大潜力,强调了集成方法在医疗数据分析中的重要性以及开发可靠诊断工具的准确、可解释模型的必要性。关键词:灰狼优化器、梯度提升机、合成少数群体、公共健康 1. 介绍