简介:元素丰度在陨石的组成矿物之间会进行分馏,即使是化学性质非常相似的稀土元素 (REE) 也是如此。先前的研究表明,亲石元素,特别是难熔亲石元素,在其母体的热变质过程中从原生相重新分布到次生相 [1-3]。然而,由于矿物颗粒尺寸相对较小(< 50 μm)且矿物中夹杂物(< 10 μm),因此,对于在母体中经历了水蚀变的碳质球粒陨石 (CC),这种重新动员(包括它们的元素分布,尤其是微量元素)的了解甚少 [4]。因此,我们开发了使用激光剥蚀电感耦合等离子体飞行时间质谱 (LA-ICP-TOF-MS) 进行定量元素映射的分析方法,不仅可以提供主要元素图,还可以提供具有大表面积 (cm × cm)、高空间分辨率 (5×5 μm/像素) 的微量元素图,并且对后续分析的表面影响可以忽略不计 [5]。这种元素映射已被证明是一种确定 H 球粒陨石中元素分布的有效工具,然后应该适用于由带有包裹体的小矿物颗粒组成的 CC。因此,在本研究中,我们旨在将 LA-ICP-TOF-MS 映射应用于 CM 球粒陨石 (CM),这是最丰富的 CC,显示出从几乎 3 型到 1 型的各种变质程度,以确定 (i) 组成矿物中的元素丰度,(ii) 最富含特定元素的相,以及 (iii) 组成矿物之间的元素分布,这可能揭示母体水蚀变过程中元素的重新动员,并有助于限制水蚀变的物理化学条件。
图 1- USCG HH-52A 降落在 USCGC WESTWIND 上,1964 年 3 月 6 日(WWW . USCG . MIL)...................................- 1 - 图 2 - 标准海军气泡倾斜仪(BALL)和 HCO 的船尾视图(WWW . NAVY . MIL).............................................................................- 3 - 图 3 - 比较倾斜仪读数和 NSRDC 电子测量在飞机事件期间的极端船体横摇和纵摇(两个测量值均以双振幅给出)(BAITIS 1975) ...........................................................................................................................................................- 5 - F图 4 — LSE 向 SH-60 发出着陆信号( WWW . NAVY . MIL ).............................................................................- 6 - 图 5 — 海岸警卫队 HH65A 6571 后翻滚方位(USCG 2004).............................................................- 8 - 图 6 — 海军人员快速爬上 DDG 飞行甲板( WWW . NAVY . MIL ) .................................- 9 - 图 7 – 甲板约束系统 – 传统楔块、链条和 RAST(在直升机下方可见) (WWW. 海军. MIL) .............................................................................................................................................- 14 - 图 8 – 动态接口 (DI) .............................................................................................................................................- 21 - 图
在进行血液测试之前必须获得批准。您应该在旅行之前在爱尔兰安排测试。这是因为如果在英国脱欧后测试仍由英国管理,则必须在成功进行滴定测试之日起三个月后才能将其运往爱尔兰。如果测试不成功,将进行重复接种,并在重复接种后 30 天进行另一次血液测试;
摘要。视频时间基础旨在确定与给定自然语言查询最相关的未修剪视频中的视频片段。现有的视频时间本地化模型依靠特定的数据集进行培训,数据收集成本很高,但在跨数据库和分发(OOD)设置下表现出较差的概括能力。在本文中,我们提出了一种降雨,以利用预先训练的大型模型的能力,从而利用了EDEO T EMPORAL G圆形(TFVTG)方法。天真的基准是在视频中列举建议,并使用预先训练的视觉语言模型(VLM)根据视觉语言对齐来选择最佳建议。然而,大多数Exting VLM都经过图像文本对或修剪的视频剪辑对训练,这使得(1)抓住关系并区分同一视频中多个事件的时间边界; (2)在视频中理解并敏感事件的动态过渡(从一个事件到另一个事件的过渡)。要解决这些问题,首先,我们建议利用大型语言模型(LLMS)分析查询文本中包含的多个子事件,并分析这些事件之间的时间顺序和关系。其次,我们将一个子事件分为动态过渡和静态状态部分,并使用VLMS提出动态和静态评分功能,以更好地评估事件和描述之间的相关性。代码可在https://github.com/minghangz/tfvtg上找到。最后,对于LLMS提供的每个子事件描述,我们使用VLMS定位与描述最相关的TOP-K提案,并利用LLMS提供的子事件的OR-DER和关系来过滤和集成这些建议。我们的方法在Charades-STA和ActivityNet字幕数据集上的零照片视频基础上实现了最佳性能,而无需进行任何培训,并在跨数据库和OOD设置中展示了更好的通用功能。
Alexandra F. Saints 1.2,3 |卡门·里安4.5 | Ioana Agache 6 | A. A. A. Akdis 7 | Akdis 7 | Alberto Wood-Perea 8.9 | Lozaro-Lozano Mont 10.11 | Ballmer-Weber Barbara 12:13 | Barni Symona 14 | Kirsten Beyer 15 | Bundslev-Jenen 16 | Helen A. Brough 1.3 | betule buyuktiryaki 17 | Derek Chu 18 | Stefano del Giacco 19 | Dunn-Galvin 20.21 | Bernadette Eberlein 22 | Ebisawa Motohiro 23 | Eigenmann 24 | Thomas Eiwegger 25.26.27.28 |玛丽·费尼1 | Montserrat Fernand-Rivas 29.30 | Alessandro Fiocchi 31 |海伦·R·费舍尔1 | David M.电影32 | Mattia Giovanine 14.33 |灰色克劳迪亚34.35 | Hoffmann-Offmann-Summer 36 |苏珊37 | Jonathan O'B Houry 38 |克里斯蒂娜·琼斯(Christina J. Jones)39 | Jutel Marek 40 | Edward F. Knol 41 |乔治·N·君士坦丁42 |缺乏吉迪恩1.2,3 | Susanne Lau 15 | Marquet Marques 1.3 |玛丽·简(Mary Jane)43.44 | Rosan Meyer 45.46 | Charlot G.死亡16 | Moya Beatriz 47.48 | Antonella Muraro 49 | Nilsson Caroline 50.51 | Lucila Camargo Olives 52 | O'Mahony's Liam 53 | Nicolaos G. Papadopulos 54.55 | Kirsten P. Perrett 56.57.58 |雷切尔·彼得斯59.60 | Marcia Potter 61 | Lars K. Pulsen 62 |格雷厄姆·罗伯茨(Graham Roberts)63 |休·桑普森64 |蓝色Schwarze 65 |彼得·史密斯66.67 | Tham Elizabeth 68.69.70 | Eve Unity 71 |罗纳德·范·里(Ronald Van Ree)72 | Venter 73 | Brian Vickery 74 | Berber Vlieg-Boerstra 75.76,77 | Thomas Werfel 78 |蠕虫Margitta 15 |乔治·布莱克·托特(George Black Toit)1.3 | Icebel Skypala 79.80Alexandra F. Saints 1.2,3 |卡门·里安4.5 | Ioana Agache 6 | A. A. A. Akdis 7 | Akdis 7 | Alberto Wood-Perea 8.9 | Lozaro-Lozano Mont 10.11 | Ballmer-Weber Barbara 12:13 | Barni Symona 14 | Kirsten Beyer 15 | Bundslev-Jenen 16 | Helen A. Brough 1.3 | betule buyuktiryaki 17 | Derek Chu 18 | Stefano del Giacco 19 | Dunn-Galvin 20.21 | Bernadette Eberlein 22 | Ebisawa Motohiro 23 | Eigenmann 24 | Thomas Eiwegger 25.26.27.28 |玛丽·费尼1 | Montserrat Fernand-Rivas 29.30 | Alessandro Fiocchi 31 |海伦·R·费舍尔1 | David M.电影32 | Mattia Giovanine 14.33 |灰色克劳迪亚34.35 | Hoffmann-Offmann-Summer 36 |苏珊37 | Jonathan O'B Houry 38 |克里斯蒂娜·琼斯(Christina J. Jones)39 | Jutel Marek 40 | Edward F. Knol 41 |乔治·N·君士坦丁42 |缺乏吉迪恩1.2,3 | Susanne Lau 15 | Marquet Marques 1.3 |玛丽·简(Mary Jane)43.44 | Rosan Meyer 45.46 | Charlot G.死亡16 | Moya Beatriz 47.48 | Antonella Muraro 49 | Nilsson Caroline 50.51 | Lucila Camargo Olives 52 | O'Mahony's Liam 53 | Nicolaos G. Papadopulos 54.55 | Kirsten P. Perrett 56.57.58 |雷切尔·彼得斯59.60 | Marcia Potter 61 | Lars K. Pulsen 62 |格雷厄姆·罗伯茨(Graham Roberts)63 |休·桑普森64 |蓝色Schwarze 65 |彼得·史密斯66.67 | Tham Elizabeth 68.69.70 | Eve Unity 71 |罗纳德·范·里(Ronald Van Ree)72 | Venter 73 | Brian Vickery 74 | Berber Vlieg-Boerstra 75.76,77 | Thomas Werfel 78 |蠕虫Margitta 15 |乔治·布莱克·托特(George Black Toit)1.3 | Icebel Skypala 79.80
在石化沉积盆地中,CO 2与碳氢化合物之间的相互作用对碳氢化合物的产生和积累产生了显着影响。这项研究的重点是Huangqiao石油和天然气储层,该储藏室以在中国拥有最大的CO 2储备而闻名。在裂缝,碳和氧同位素分析中,方解石静脉的同位素同位素的同位素日期以及稀土元素(REE)分析用于阐明研究区域中无机和有机流体的年代学和起源。岩石学观测表明,存在各种流体夹杂物的成分,包括气态CO 2,气态CH 4,CH 4 -CO 2混合物和碳氢化合物流体。此外,通过拉曼定量测量和热力学模拟,计算了CH 4和CO 2轴承流体夹杂物的密度,成分,压力和温度特征。基于流体夹杂物和U – PB年代的捕集条件,确定了两个碳氢化合物充电的阶段:一个早期夏普阶段(大约200-185 MA),其特征是中期油和CH 4和早期始新世阶段(大约为61-41 mA),标有高成熟度和CH 4。co 2的积累事件分为两个阶段:在始新世早期(大约59-39 ma)期间高密度CO 2流体活性,而低密度CO 2流体活性则在第三级期期间(大约23-4 mA)。此外,深层流体流入储层导致水热改变,这是由异常高的均质化温度和玻璃体反射率所证明的。CO 2对原油具有提取作用,其较晚进入主要导致清除较轻的组件,尤其是CH 4。当高温水热CO 2进入油储油罐时,它会加速原油的开裂并改变液体的成分。这个热事件还加快了源岩的热演化,从而在整个储层的开发过程中导致提取,热解和气体位移。这项研究提出了一种全面的方法,用于定量研究这种性质的石化盆地的地质流体。
摘要——消费者和研究人员缺乏一种易于使用、可靠且经济高效的方法来准确评估身体活动和能量消耗,这是成功控制体重的关键因素。BodyMedia 通过开发 SenseWear 臂带满足了这一需求,该臂带利用 2 轴加速度计、热通量传感器、皮肤电反应传感器、皮肤温度传感器和近体环境温度传感器来收集数据,从而计算能量消耗。本文概述了相关研究,这些研究展示了 SenseWear 臂带如何提供非常低的能量消耗错误率,相对于更昂贵、限制更多且难以使用的设备,以及它如何是一种经济高效且简单的解决方案,可在实验室外应用以跟踪和探索能量消耗。索引术语——SenseWear 臂带、能量平衡、传感器阵列、能量消耗、TEE、AEE、REE、消耗评估身体活动评估、情境检测、自由生活环境、准确性和可靠性、可穿戴计算机。简介 增加身体活动量以及实现和维持能量平衡已成为 21 世纪重要的个人健康目标。卫生专业人员深知,许多主要的健康问题都是由缺乏身体活动以及摄入的热量多于消耗的热量而引起或加剧的。肥胖症流行及其相关问题,包括高血压、II 型糖尿病、冠状动脉疾病、关节炎和慢性背痛,都证明了久坐的生活方式和超重会导致生活质量低下,在许多情况下还会导致过早死亡。虽然卫生专业人员以及有体重问题的个人都承认需要改善和维持他们的锻炼和饮食行为,但他们缺乏准确测量能量消耗所需的工具,而能量消耗是确定一个人消耗的能量是否多于摄入能量的重要身体测量指标。为了减肥,一个人首先必须能够准确量化活动量和能量消耗。只有这样,他们才能开始对日常生活进行必要的适当改变,以帮助他们提高活动量和调整卡路里摄入量。到目前为止,还没有一种易于使用、可靠且准确的方法可以在实验室环境之外定期评估身体活动量和能量消耗。这对体重有重大影响
1)MTM的FJH技术是回收金属的更好方法。常规金属回收是昂贵的,耗时的,能量密集的,取决于大部分的试剂被添加到该过程中,并且可能不会区分感兴趣的金属和其他金属。某些商品,尤其是锂和Rees,都有其自身对传统方法的脆弱性。,但FJH克服了所有这些,因为它很快,需要少得多的能量,并且可以确保仅回收有价值的金属。2)FJH已被证明是有效的。重复测试不仅表明MTM的FJH有效,而且由于过去几年的发展工作而变得越来越多。在2024年中期进行的测试表明,FJH对REE和关键金属的回收率比两年前高出50%。最新的REES测试实现了REES向氯化物的平均转化率93%,关键杂质降低了95%。3)FJH有很大的市场机会,预计未来几年将继续增长。金属回收将变得越来越重要,因为发现关键金属的新沉积物的成本随着运营地雷的不断增加而将其带入生产,但在某些司法管辖区(最著名的是欧盟)的法规授权将回收利用作为关键金属供应链的一部分。fjh将确保回收过程不仅可以加速,而且可以更有效(在产生更高的金属产量)和成本较低。4)2025将是一年的可靠新闻流。5)FJH有很大的上涨空间可以实现。该公司的下一个主要里程碑是FJH示范工厂设计的完成,预计将于2月,然后是采购,建筑和调试阶段。其他潜在的新闻流将包括正在进行的测试,商业合作伙伴关系和资金。,尽管该公司由于与Indium的合作和最新的FJH测试结果而在过去三个月中重新评估,但该公司及其技术仍处于早期阶段。我们看到了进一步重新评估的范围,如果它可以达到2025年设定的里程碑,尤其是设计以及随后的施工和试点规模工厂的开始和开始。进一步的商业交易和测试结果可能是进一步的催化剂。随着公司以前的估值增加了一倍,我们将其更新为2.607亿美元或每股0.57美元。
能源行业目前正在向更多地利用绿色能源技术转型。绿色能源转型严重依赖金属,例如铝、铬、钴、铜、锂、锰、镍、稀土元素 (REE)、硅、锡、钛、钨和锌等。然而,这种转变发生在以下背景下:(1) 已知矿藏和下游能力的地理集中;(2) 需求远远超过供应;(3) 强烈要求缓解环境和能源问题;(4) 地缘政治冲突不断加剧。因此,能源转型并不简单,因为它加剧了材料需求、市场和地缘政治竞争。对于在这一转型中至关重要的锂来说尤其如此。材料获取、能源可持续性和国家自给自足的担忧越来越多地导致国家和超国家的地缘政治活动,例如资源国有化、建立战略或贸易联盟、鼓励近岸和友好岸外供应、促进材料循环利用以及加速绿色技术的研究和部署。本研究从矿产价值链(包括下游产品)的角度,考察了绿色能源转型对全球的影响,以及对预测需求的影响和地缘政治的影响。未来可能出现许多结果,这取决于:(1)能源转型的务实成果,只有通过实施才能在经验上实现;(2)独立性和全球稳定性的强弱;(3)区域或友好贸易集团的崛起。特别是,本研究考察了未来出现 OPEC 式绿色能源矿产和金属 (GEMM) 组织的情景,以锂为例,因为:(1)它在绿色能源转型中具有明确而重要的作用;(2)它在地理上集中,有利于生产协调;(3)它主要由发达国家消费,但由发展中国家供应。围绕锂建立的组织可以成为其他 GEMM 市场的原型。因此,我们建议可以利用现有情况,并建议这样一个组织(这里称为绿色能源矿产出口国或“GEMEC”),它可以作为一个协作平台,以加强地缘政治定位,通过协调的生产和出口政策实现经济效益最大化,并解决与绿色能源转型相关的环境、社会和治理挑战。
痕量元素签名的映射是地球科学和材料科学中扩展的工具,它允许研究实心材料以及可能不会被主要元素捕获的过程。在过去十年中,激光消融中的开发能力耦合质量 - 光谱法(LA-ICP-MS)功能现在可以实现原位元素映射的必要空间分辨率。用LA-ICP-MS获得二维,完全定量和地质有意义的数据仍然是一项艰巨的任务,并且一个特殊的障碍是对不均匀阶段的校准,例如化学分区的矿物质。这项工作提出了一种新型的方法,用于采用LA-ICP-QUAD Rupole MS(LA-ICP-QMS)的多元素映射的数据减少和图像生成方法,该方法在免费和开源软件Xmaptools中实现。提出了三个地质AP平原,以说明程序的好处。在不同的空间分辨率下,多次映射了来自Eclogitic样品(Lato Hills,Togo)和斜长石,K-Feldspar,k-feldspar的石榴石,k-feldspar,Biotite(El Oro Complex,Ecuador),以测试校准质量和化学检测能力。金红石,并在单个晶粒内显示了510至550℃的温度范围为510至550℃。通过与电子探针微分析(EPMA)获得的分区主要和次要元素图(石榴石,斜长石)和ti-in-biotite地热图图(EPMA)进行比较,通过与分区的主要和次要元素图(石榴石,斜长石)和Ti-In-Biotite地热度图(EPMA)进行比较来验证LA-ICP-MS方法的准确性。此外,此类地图也被记录得更快。使用LA-ICP-QM实现高达5μm的空间分辨率,这与报告的LA-ICP飞行器时间质谱法(LA-ICP-TOFMS)的分辨率相似,尽管以明显较低的习得速度。较低空间分辨率的地图提供了更好的化学检测能力,如较低的每像素检测极限(LOD)地图计算所证明的。像素分配策略和仪器条件也对地图质量有直接影响。我们建议将地图插入到方形像素上,其中像素由多个扫描组成以获得改进的检测能力。使用模拟LA-ICP-MS映射的基准测试表明,斑点大小以及扫描方向可以根据化学模式的特征大小而导致组成的变化。通过在REE中可见的石榴石中映射薄薄的环形环,并且这种综合偏移可以对例如扩散建模产生重大影响。新的软件解决方案提供了具有95%置信度的单像素LOD过滤的LA-ICP-MS图的多标准和可变组成校准,从而使用户可以同时量化主要和痕量元件的不均匀材料,并提高精度。