个体正在努力应对罕见的遗传疾病,例如Angelman,Cornelia de Lange,脆弱的X和RETT综合征,在导航其日常环境时面临着巨大的挑战。除了智力障碍,沟通统计和感官障碍外,这些人还经常患有严重的运动障碍。这种复杂的情况不仅严重损害了他们的生活质量,而且对照料者和家庭造成了增加的负担(Krath等,2021)。为了应对这些挑战,技术干预已成为有前途的解决方案。认真的游戏并利用新技术,具有教育,诊断和康复目的的身临其境和娱乐性的体验。越来越多地采用了基于人工情报的计划,尤其是那些采用强化学习的程序。这种复杂的方法涉及一种人工智能的代理,与参与者的表现不断相互作用,以实时调整任务或活动的复杂性或困难(Krath等,2021; Liu等,2022)。这种个性化的适应性确保了最佳的用户参与度和效果。在本文中,我们主张将严肃的游戏和强化学习的整合到服务和康复目标。这种合并的方法可能提出了一种量身定制的解决方案,以促进患有罕见遗传疾病的个体的适应性反应。我们探索了各种领域,包括具有执行功能的认知技能,沟通能力和管理具有挑战性的行为。我们承认对参与者的生活质量的深刻影响,提供了说明性的例子来强调我们的观点。我们的创新方法将游戏融合与伯爵的认知发展理论相结合,将其分类为促进新的适应技巧的认知框架(Robb等,2019)。
1, SFEBq = serum-free floating culture of em- bryoid body-like aggregates with quick aggrega- tion, CGE = Caudal Ganglionic Eminence, SS = Subpallium Spheroids, SAG = Smoothened Agonist, CXCR4 = Chemokine Receptor type 4, CO = Cortical Organoids, ALI-Cos = Air-Liquid Interface culture to Cerebral Organoids, MPCs = Mesoderm Progenitor Cells, IBA1 = Ionized calcium-Binding Adapter molecule 1, WDR62 = WD Repeat domain 62, KIF2A = Kinesin Fam- ily Member 2A, CEP170 = Centrosomal Protein 170, NARS1 = asparaginyl-tRNA synthetase 1, RGC = Radial Glial Cells, CNV = Copy Num- ber Variation, PTEN = Phosphatase and Tensin homolog, ODC1 = Ornithine Decarboxylase 1, PKB = Protein Kinase B, ASDs = Autism Spec- trum Disorders, FOXG1 = Forkhead Box G1, CHD8 = Chromodomain Helicase DNA-bind- ing protein 8, DEGs = Differentially Expressed Genes, DISC1= Disrupted-in-Schizophrenia 1, GSK3 = Glycogen Synthase Kinase 3, RTT = Rett Syndrome, MeCP2 = Methyl-CpG-binding protein 2, ERK = Extracellular signal-Regulated Kinase, MAPK = Mitogen-Activated Protein Ki- nase, MDS = Miller-Dieker Syndrome, AD = Alzheimer's Disease, APP = Amyloid Precursor Protein, PSEN = Presenilin, APOE = Apoli- poprotein E, NFT = NeuroFibrillary Tangles, MMP = Metalloproteinase, PD = Parkinson's Disease , SNCA = Synuclein Alpha, LRRK2 = Leucine Rich Repeat Kinase 2, HD = Huntigton's Disease, GSCs = Cancer Stem Cells, GBOs = Glioblastoma Organoids, TBI = Traumatic Brain Injury, CCI = Controlled Cortical撞击,NSE =神经元特异性烯醇酶。
诱导的多能干细胞(IPSC)可以研究神经发育和神经退行性疾病,例如自闭症谱系疾病,包括脆弱的X综合征和RETT综合征,肌萎缩性侧面硬化症,阿尔茨海默氏病,阿尔茨海默氏病,帕克森氏病,亨廷顿病,亨廷顿病,亨廷顿氏病,亨廷顿病。人IPSC线是通过对成纤维细胞,头发或血液样本的重编程而产生的,这些[2]是由患有疾病相关表型的患者直接捐赠的,并且可以通过诸如CRISPR/CAS9等基因组修饰[3]引入IPSCS的基因组中,并且可以将已知的基因型或引起疾病的突变捐赠。为了研究突变对细胞水平的影响,可以将IPSC分化为与疾病相关的神经元亚型。常规分化方案依赖于在培养基中添加特定的可溶性生长因子和化合物。这些因素触发了影响转录因子(TFS)的细胞内信号传导途径,从而通过改变基因表达水平并触发基因调节网络来诱导神经元分化。然而,这些方案可能非常精致且耗时,持续数周到几个月,并在不同的发育阶段和神经胶质细胞下产生不同神经元亚型的异质混合物。在人IPSC中某些神经源TF的强制表达捷径神经元分化,导致神经发生迅速,产生了高度均匀的神经元群体[4-7]。在这里,我们描述了鲁棒诱导的神经元IPSC系的培养以及不同的方法,以将神经源性TF和基因组修饰引入人IPSC,以及如何将这些IPSC区分开为成熟的神经元。
中枢神经系统(CNS)是最复杂的生理系统之一,CNS疾病的治疗代表了主要医疗需求的领域。中枢神经系统的一个关键方面是它缺乏再生,因此损害通常是永久性的。损害通常会导致神经变性,因此神经保护的策略可能会导致重大医学进展。G蛋白偶联受体(GPCR)家族是主要受体类别之一,它们在临床上已成功地靶向。一类GPCR是由生物活性溶血磷脂激活的GPCR,尤其是配体,尤其是鞘氨氨酸-1-磷酸盐(S1P)和溶血磷脂酸(LPA)。研究越来越多地证明了S1P和LPA及其受体在生理和疾病中发挥的重要作用。在这篇综述中,我描述了S1P和LPA受体在神经变性中的作用以及在神经保护中的潜在作用。我们对S1P受体作用的大部分理解都是通过药理学工具。这样的工具,fingolimod(也称为fty720),它是一种S1P受体激动剂,但在免疫系统中的功能拮抗剂,在多发性硬化症中通过产生淋巴细胞减少自身免疫性攻击,在多发性硬化症中具有临床上有效。但是,有证据表明芬诺莫德也是神经保护作用。此外,Fingolimod在许多其他神经病理学中都具有神经保护作用,包括中风,帕金森氏病,亨廷顿氏病,RETT综合征,阿尔茨海默氏病等。LPA受体似乎也参与其中,在各种神经病理学中被上调。LPA受体的拮抗剂或突变,尤其是LPA 1,在各种疾病中具有神经保护作用,包括皮质发育,创伤性脑损伤,脊髓损伤,中风等。最后,LPA受体可能与其他受体相互作用,包括与可塑性相关基因的功能相互作用。
人工智能 (AI) 被粗略地定义为一种经过编程以模拟人类智能解决问题和学习行为的计算机(机器),它已经改变了我们生活中许多领域(元素)的运作方式。它被广泛应用于银行、遥感、交通、医疗保健等 [1]。在医学领域,人工智能平台已经存在,并且可能很快成为多种胃肠道疾病(包括巴雷特食管、胃和结肠病变)的早期发现、表征和分类不可或缺的一部分 [2-5]。基本上,它代表了计算机衍生的决策算法,这些算法是通过比较特定患者的数据与大量其他患者的数据而开发的,人们一再声称这样的项目将很快实现医生工作的自动化 [1, 2]。在此之前,以及在临床实践中实施和整合人工智能给工程师和医务工作者带来的技术挑战之外,还有一系列悬而未决的问题和法律问题需要解决。由于人工智能机器在我们生活中的广泛存在和不断增加,它们可能很快就会在影响我们的情绪和反应能力方面获得一些社交能力,因此关键问题是人工智能是否会在未来取代医生,以及有多少人会支持这种情况发生。我们从 Wadhawa 等人对 124 名美国胃肠病学家的调查中看到。[6] 其中 86% 的人对在日常实践中应用人工智能有浓厚的兴趣,近 85% 的人认为这会改善他们的实践。另一方面,只有 57% 的人会依赖人工智能做出的决定。因此,关于人工智能是否会在未来取代医生这个问题的答案远非简单明了。有一件事是肯定的,那就是一旦
摘要背景:MECP2变体引起X染色体相关的罕见发育综合征。通常,该突变是零星的,发生在女性中,对男性致命。准确的遗传和临床诊断被认为是症状管理和新疗法的发展所必需的。这些目标可能很难在更多的因素中涉及携带同一MECP2变体的患者的高度可变临床图片中的因素。我们描述了两个兄弟携带相同MECP2变体的临床图片,并将其与文献中发表的病例进行了比较。方法:已知大多数MECP2突变是从头突变,这就是为什么夫妻俩其他孩子中突变的复发的原因。出乎意料的是,我们的常规基因检测表明,一名23岁男子(P1)和他的弟弟(P2)携带同样的半细胞病原失误变体C.419c> t,p。(ALA140VAL)(Transcript NM_004992.3)MECP2的MECP2,MECP2的MECP2是MECP2的,它是从他们的母亲身上遗传而来的。因此,认为有必要进一步的临床评估和与文献案例进行比较。结果:P1患有严重的综合症智力障碍(ID),而他的兄弟的ID基本上限于口头技能问题。P1和他的弟弟都没有被诊断出患有RETT综合征。P1(与他的弟弟不同)有几个舌,社交和运动困难;破坏性行为是治疗最困难的症状。P1对几项医学和非医疗治疗试验的反应仍然不足,因此要求患者长期住院。文献综述表明,除我们的家庭外,还有其他五个家庭,其中一个以上雄性携带相同的MECP2 P.Ala140Val突变,例如P1和P2。来自我们的所有24名男性(n = 2)和其他(n = 22)的表型,大概是非致命的突变显示出很大的可变性。结论:男性MECP2的P.Ala140Val突变与罕见的X染色体发育障碍有关,具有高度可变的表型。需要进一步的研究来更好地理解所有可以解释同一基因型内表型差异以找到最佳药物疗法的影响因素。
候选人HX127 Grenoble,2024年9月19日。制药公司Huntx Pharma宣布,由天使桑特(AngelsSanté),巴黎商业天使,格勒诺布尔天使(Grenoble Angels)和受亨廷顿氏病影响的患者家属领导的170万欧元融资。该公司还通过法国2030年计划从法国BPI的支持中受益。筹集的资金将使Huntx Pharma能够最终确定临床前研究,并准备动物和人类的监管安全研究,以继续开发其候选药物HX127来治疗亨廷顿氏病,这是一种罕见的遗传神经退行性疾病,目前尚无治疗治疗。HuntX Pharma: an innovative approach aiming to restore the defective gene without resorting to gene therapy The result of research by Professor Frédéric Saudou, Director of the Grenoble Institute of Neurosciences from 2013 to 2023 (GIN) and co-founder of HuntX Pharma, the company's first drug candidate, named HX127, aims to restore the altered transport in the brains of patients without using基因疗法。该分子的作用机制在几种与轴突运输缺陷有关的神经退行性疾病模型中(包括亨廷顿氏病)证明了其保护性甚至治愈的作用。 “我们要感谢我们所有的投资者和金融合作伙伴的支持和信任。使用这些资金,我们将在2026年完成对动物的调节研究的临床前研究,以在人类中发起1期临床试验。我们的目标也是在轴突运输缺陷引起的另一种神经退行性疾病中验证我们策略的可扩展性。我们旨在为全球目前没有治疗方案的疾病的30万人提供治疗解决方案。”我们对Laure Jamot和FrédéricSaudou形成的二人组的活力和互补性说服了他们,他们正在开发一种非常创新的和前所未有的方法来修复基因而不诉诸Gene疗法,” AngelsSanté的Sophie Manuel解释说。联合创始人,劳尔(Laure)和弗雷德里克(Frédéric)的质量和互补性给我们留下了深刻的印象:经验,能力,创造力,承诺和道德。与Huntx Pharma一起,我们目睹了一项开创性的治疗创新,这在生活质量和寿命方面都改变了亨廷顿氏病患者的游戏。超越亨廷顿的生物技术,这提供了一个平台,可以治疗其他几种神经系统疾病,例如Rett综合征和潜在的帕金森氏症。Saudou教授是一位因其关于亨廷顿氏病的研究而获得国际知名人士的格勒诺布尔人。我们很高兴为他的研究的发展和实现做出贡献。
常规检验α-肌血症(TPSAB1和TPSB2)淀粉样变性(家族性,TTR)AS,Angelman综合征NaApeceped(AIRE)Beckwith-Wiedemann(BWS)恶性。黑色素瘤(CDKN2A)NaEGFR突变(T790M等)在CtDNA上(仅在Streck Bct或Paxgene DNA管中)FG(Keller Clanslome,Med12)NaHblrg,Gilbert综合征(UGT1A1)naHblrg,她差异。胃癌(CDH1)Na na hed,低蛋白外胚性发育不良(EDA)HFE-HH,HERED。
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。
对染色体微阵列检测结果异常或有可疑的胎儿或儿童的亲生父母或兄弟姐妹进行评估 使用 aCGH 或 SNP 阵列进行染色体微阵列检测尚未得到证实,并且由于疗效证据不足,对于所有其他人群和情况而言,在医学上并非必要。 注意:医疗政策“植入前基因检测和相关服务”中介绍了植入前基因检测 (PGT)。 用于审核的医疗记录文件 医疗服务的福利覆盖范围由会员特定的福利计划文件和可能要求覆盖特定服务的适用法律决定。可能需要医疗记录文件来评估会员是否符合临床覆盖标准,但不能保证覆盖所要求的服务;请参阅标题为“用于审核的医疗记录文件”的协议。定义 发育迟缓:发育迟缓可用于描述 5 岁以下儿童在预期年龄出现发育里程碑延迟的情况(Moeschler 和 Shevell,2014 年,2019 年重申)。 智力障碍:18 岁前诊断出的疾病,包括智力功能低于平均水平和缺乏日常生活所需的技能(MedlinePlus,2020 年)。 宫内胎儿死亡或死产:妊娠 20 周或之后胎儿死亡(美国妇产科医师学会 [ACOG]、母胎医学会 [SMFM],2020 年,2021 年重申)。产前诊断:在出生前对胎儿脱氧核糖核酸 (DNA) 或染色体进行的实验室检测,以确定胎儿是否患有遗传或染色体疾病(ACOG,2016a,2023 年重申)。明确的遗传综合征:综合征是一组可识别的特征或异常,这些特征或异常往往同时发生并与特定疾病有关。可以使用特定面部特征或其他身体特征、实验室测试或家族史等区别性特征来识别遗传综合征。(《基因组和遗传术语词汇表》,美国国家人类基因组研究所,2024 年)。明确的遗传综合症的例子包括但不限于:唐氏综合症、克氏综合症、马凡氏综合症、1 型神经纤维瘤病、成骨不全症、普拉德-威利综合症、雷特综合症、13 三体综合症(帕陶综合症)、18 三体综合症(爱德华兹综合症)、特纳综合症和威廉姆斯综合症。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中的代码列表并不意味着该代码描述的服务是承保的或不承保的健康服务。健康服务的福利承保范围由会员特定的福利计划文件和可能要求承保特定服务的适用法律决定。包含代码并不意味着有任何报销权利或保证索赔付款。其他政策和指南可能适用。
